Me zanî ko xweseriya me, di zimanê me de ye û em bi tenê bi hînbûna xwendin û nivîsandina zimanê xwe û parastina wî, di civata miletan de, wek miletekî xweser dikarin bijîn û payedar bin.
Ronahiyehenase (bi înglîzî: photorespiration), di riwekan de rêçeyek metabolî ye ko di ronahiyê de rû dide, enzîma RuBisCO li dewsa karbona dîoksîdê , oksîjenê bi rîbuloza bîsfosfatî (RuBP) ve girê dide.[1]
Ronahiyehenase wekî çerxa C2 an jî rêçeya C2 jî tê navkirin. Ji ber ko ev bûyer di hebûna ronahiyê de, bi xerckirina oksîjenê rûde û CO2 û H2O peyda dibe, dişibe bahenaseya xaneyê. Lê di ronahiyehenaseyê de ATP nayên berhemanîn. Ji ber ko hinek awêteyên çerxa Calvin hildiweşin, li dawiya çerxa Calvin de rêjeya berhemên endamî jî kêm dibe. Ango ronahiyehenase li ser fotosentezê bandorek neyînî dike.[2]
Ronahiyehenase wekî çerxa C2 an jî rêçeya C2 jî tê navkirin. Ji ber ko ev bûyer di hebûna ronahiyê de, bi xerckirina oksîjenê rûde û CO2 û H2O peyda dibe, dişibe bahenaseya xaneyê. Lê di ronahiyehenaseyê de ATP nayên berhemanîn. Ji ber ko hinek awêteyên çerxa Calvin hildiweşin, li dawiya çerxa Calvin de rêjeya berhemên endamî jî kêm dibe. Ango ronahiyehenase li ser fotosentezê bandorek neyînî dike.[2]
Danasîn
Fotosentez bi gelemperî di xaneyên mezofîlê yên nava pelê riwekan de rû dide. Gazên dikevin nav pelê an jî ji pelê derdikevin ji aliyê stomayan ve tên rêkxistin. Stoma (demîle) bi gelemperî li ser ruyê binî yê pelê de cih digirin. CO2 jî ji atmosferê di bin kontrola stomayan de derbasî nav pelê dibe û di xaneyên mezofîlê de ji bo fotosentezê tê bikaranîn.
Dema stoma vekirîye, di navbera riwek û atmosferê de alûgorkirina gazan rû dide. Ji riwekê oksîjen û av bi şêweyê gaz (hilma avê) belavê hawirdorê dibin, ji atmosferê jî CO2 derbasî nav xaneyên riwekê dibe.[3] Ji bo alûgorkirina gazan, divê stomayên riwekê vekirî bin.
Dema dinya germ û ax ziwa ye, riwek stomayên xwe digirin ko ji pelên riwekê hilma avê dernekeve derve û riwek bi kêmasiya avê re rû bi rû nemîne. Lê girtina stomayan rê li ber CO2 ya atmosferê digire, bi karlêkên fotosentezê CO2 ya nav pelê riwekê tê xerckirin û asta xestiya CO2 di kloroplastê de dadikeve. Her wisa di heman demê de oksîjena berhema fotosentezê jî nikare derkeve derva û di nav pelên riwekê de berhev dibe. Ji ber xestiya nizm a CO2-yê û xestiya bilind a oksîjenê, enzîma RuBisCO li şûna CO2-yê, oksîjenê bi ribuloza bîsfosfatî ve dide çespandin, ango ronahiyehenase dest pê dike.[4]
Taybetmendiya enzîma RuBisCO
Enzîma RuBisCO (rîbuloza bisfosfatî karboksîlaz-oksîjenaz) di rewşa asayî de di çerxa Calvin de RuBP-yê han dike bo çespandina CO2-yê. Lê her wekî di navê wê de jî diyar e, RuBisCO ne tenê çespandina CO2-yê lê dikare çespandian oksîjenê (O2) jî han bike. Çespandina RuBP ya bi karbona dîoksîd an jî oksîjenê ve, bi heman beşa enzîma RuBisCO ve tê hankirin.[5] Di rewşa asayî de di germahiya 25 pile santîgratê de,çespandina karbona dîoksîde, çar car ji çespandina oksîjenê zêdetir e, %20 karbona çespandî bi ronahiyehenaseyê tê windakirin. Ev windabûna karbonê, bi zêdebûna pileya germahiyê zêde dibe.[5]
Di rewşa asayî de xestiya CO2-yê di kloroplastan de zêde ye, loma RuBisCO CO2-yê bi RuBP-yê ve girê dide. Heke di hawîrdorê de rêjeya oksîjenê zêde bibe, li şûna CO2-yê O2 bi RuBP-yê ve tê çespandin. Bi girêdana oksîjenê çerxa Calvin êdî bi awayek asayî rû nade, hinek awêteyên çerxê hildiweşin bo CO2 û H2O-yê. Ev rewş wekî ronahiyehenase tê navkirin.[2]
Gava RuBisCO oksîjenê li RuBP-yê zêde dike, molekulek 3-fosfoglîserat û molekulek dukarbonî ya bi navê 2-fosfoglîkolat (bi înglîzî: phosphoglycolate) wekî molekulên xweragir (bi înglîzî: stable) peyda dibin.3-Fosfoglîserata di destpêka ronahiyehenaseyê de hatî çêkirin, wekî mîna fosfoglîserata asayî ya di fotosentezê de hatiye çêkirin, tê guhartin û ji bo dubare çêkirina RuBP-yê tê bikaranîn. 2-fosfoglîkolat bi rêzeakrlêkên di kloroplast, proksîzom û mîtokondriyê de tê guhertin bo glîseratê û bo çêkirina RuBP-yê tê xerckirin.[6]
Riwekên C3
%85ê riwekên ser erdê de karbona dioksîd a atmosferê, bi hankirina enzîma RuBisCO, rasterast bi rîbuloza bîsfosfatî (RuBP) ve tê çespandin û awêteyek şeşkarbonî ya xwenegir (bi înglîzî: unstable) peyda dibe, lê ev awête hildiweşe bo awêteyek sêkarbonî ya xweragir. Ango priraniya riwekan de piştî çespandina karbona dîoksîdê, molekulek sêkarbonî peyda dibe, loma ji van riwekan re tê gotin riwekên C3.[7] Rêçeya ko riwekên C3 ji bo çespandina karbona dioksîdê bi kar tînin wekî rêçeya C3 tê navkirin.
Birinc, kartol, genim, ceh hin ji riwekên C3 ne ko wekî xurek tên bikaranîn. Rêjeya karbohîdratên ko evan riwekan berhemtînin, ji rêjeya karbohîdratên ji fotosenteza wan tê hêvîkirin, kêmtir e, ango hinek ji berhemên fotosenteza wan winda dibe.
Ji ber ko guncandina (adaptasyon) riwekên C3 bo hawirdora germ û ziwayi (kêmavî) ne baş e, riwekên C3 bi taybetî di demên germ û hişkî (ziwayî) de hinek ji berhemên xwe yên fotosentezê winda dikin.[3] Rêjeya berhemên ko tê hevîkirin, li dawiya karlêkên fotosentezê de pêk nayê û hê kêmtir berhem çêdibe. Hokara serekî ya bandor li ser kêmbûna berhemdariya berhemên fotosentezê ya riwekên C3 dike, ronahiyehenase ye.[3] Ji ber ronahiyehenaseyê, bi qasî %25ê karbona di çerxa Calvinde de hatiye çespandin, winda dibe.[8]
Ronahiyehenase geşebûna riwekan sinordar dike, loma riwek hê pirtir RuBisCO berhem dikin ko rê li ber bandora neyînî ya ronahiyehenaseyê bigirin.[4]
Di hawirdorên germ û kêmavî de hinek riwek jî bi guncandinên fotosentezî (bi înglîzî: photosynthetic adaptations) bandora ronahiyêhenaseyê kêm dikin, ji van riwekan re tê gotin riwekên C4 û riwekên CAM. Di van riwekanda rêçeya çespandina karbonê ji riwekên C3 cudatir e. Di riwekên C4 û riwekên CAM de ji bo çerxa Calvin, li derdora RuBisCO-yê de xestiya karbona dioksîdê hertim bilind e. Loma ronahiyehenase di bin çewsandinê de ye.[9]
Gavên karlêkên ronahiyehenaseyê
Karlêkên ronahiyehenaseyê di sê endamokan de; di kloroplast, peroksîzom û mîtokondriyê de rû didin.
Gava di kloroplastê de RuBisCO girêdana oksîjenê bi RuBP-yê ve han dike, li gel 3-fosfoglîserat a asayî, 2-fosfoglîkolat jî peyda dibe.[10] 3-fosfoglîserat tevlê karlêkên çerxa Calvin dibe, 2-fosfoglîkolat tevlê karlêkên rêçeya C2 dibe.
Bi enzîma fosfoglîkat fosfotaz, ji 2-fosfoglîkolatê, fosfat tê dûrxistin û glîkolat peyda dibe.
Glîkolat ji kloroplastê tê şandin bo peroksîzomê, li vir ji aliyê glîkolat oksîdazê ve tê oksandin bo glîoksîlat û hîdrojena peroksît (H2O2).[11]Hîdrojena peroksît awêteyek xeter a oksandinê ye, ji aliyê enzîma katalaz ve tê guhertin bo H2O û O2.
Bi karlêka transamînasyonê (bi înglîzî: transamination reaction) molekulek amonyak bi glîoksîlatê ve tê girêdan û glîoksîlat diguhere bo glîsînê.
Glîsîn ji peroksîzomê tê guhaztin bo mîtokondriyê.[11]Di mîtokondriyê de du molekulên glîsînê ji bo çêkirina molekulek serîn, CO2 û NH3 tên xerckirin.[10] Çavkaniya karbona dîoksîda ko di ronahiyehenaseyê de tê berdan, ev karbona dîoksîda ji glîsînê ye.
Serîn ji mîtokondriyê tê guhaztin bo peroksîzomê, li wir bi karlêka transamînasyonê, tê guhertin bo hîdroksîpîruvat. Ev awête jî bi enzîma hîdroksîpîruvat reduktaz ve tê kêmkirin bo glîseratê û di sîtoplazmayê de glîserat jî tê fosfatkirin û bi şêweyê 3-fosfoglîserat tê guhaztin bo kloroplastê.
Fosfoglîserat di kloroplastê de tevlê çêkirina RuBP-yê dibe.[10]Di karlêkên ronahiyehenaseyê de ATP û NADPH-yên di karlêkên ronahiyê de hatine berhemanîn bi bêkêrî tên xerckirin.
^"photorespiration ." A Dictionary of Biology. . Encyclopedia.com. 16 Oct. 2024[1]</.
^Jump up to:abReece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
^Jump up to:abcSolomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
^Jump up to:abStarr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.
^Jump up to:abLosos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
^Shi, X.; Bloom, A. Photorespiration: The Futile Cycle?Plants2021,10, 908.</
^Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
^Tymoczko, J.L., Berg, J.M. and Lubert Stryer (2015) Biochemistry, a short course. New York: W.H. Freeman & Company, A Macmillan Education Imprint.
^Keech, O., Gardeström, P., Kleczkowski, L. A., and Rouhier, N. (2017) The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations.Plant, Cell & Environment, 40: 553–569. doi: 10.1111/pce.12713
^Jump up to:abcFundamentals of Biochemistry L I F E AT TH E M O L E C U L A R L E V E L. : Voet D.,Voet G.,Pratt C. • John Wiley & Sons, Inc. ISBN-13: 978-0470-54784-7
^Jump up to:abBiochemistry. : Rawn, J.D. (1989) Biochemistry. Burlington, NC: Neil Patterson Publishers, Carolina Biological Supply Company. ISBN- 0-89278-400-8
Oksandina pîruvatê an jî dekarboksîlasyona pîruvatê (bi înglîzî: pyruvate oxidation-pyruvate decarboxylation), rêçeyek kîmyaya zindî ye ko ji bo çêbûna asetîl CoA, pîruvat tê oksandin (hilweşandin) bo koma asetîl û karbona dîoksîdê.
Di hebûna oksîjenê de pîruvatên ko di glîkolîzê de hatine çêkirin tên oksandin, bi vî awayê ji pîruvatê he pirtir enerjîya ATP tê bidestxisitin. Di xaneyên navikrasteqînan de karlêkên bo oksandina pîruvatê di hundirê mîtokondriyê de rû didin. Heman karlêk di xaneyên navikseretayî de di sîtoplazmayê de û li ser rûyê navî yê parzûna xaneyê de rû didin.[1]
Xane enerjiya pîruvatê bi du qonaxan bi dest dixe, di qonaxa yekem de pîruvat tê oksandin û pêkhateyek dukarbonî û karbona dîoksîd peyda dibe. Di heman demê de NAD+ jî tê kêmkirin bo NADH-ê.
Di qonaxa duyem de awêteya du karbonî bi karlêkên çerxa Krebs tê oksandin bo karbona dîoksîdê.
Pîruvatên bi rêçeya glîkolîzê çêbûne, nikarin rasterast tevlê qonaxa paşê ya bahenaseyê bibin, divê peşî ji pîruvatê molekulek karbona dioksîd were dûrxistin.[2]
Pîruvat bi guhaztina çalak ji sîtoplazmayê tê guhaztin bo mîtokondriyê.[3]
Di xaneyên navikrasteqîn de pîruvat di beşa matriks a mîtokondriyê de tê hilweşandin bo asetîl CoA.[4][5]
Ji ber ko çêbûna asetîl CoA, qonaxa glîkolîzê bi çerxa Krebs re girê dide, karlêka oksandina pîruvatê wekî karlêka guhaztinê (bi înglîzî: transition reaction) an jî karlêka navber (bi înglîzî: bridge reaction) jî tê navkirin.[5]
Gavên oksandina pîruvatê
Karlêka oksandina piruvatê ji aliyê enzîma pîruvat dehîdrogenaz ve (bi înglîzî: pyruvate dehydrogenase) tê hankirin. Pîruvat dehîdrogenaz kompleksek fireenzîm e (bi înglîzî: multienzyme complex) û ji 72 zincîrên polîpeptîd pêk tê.[6]
Kompleksa fireenzîm sê karlêkan han dike.
1.Oksandina pîruvatê bi karlêka dekarboksîlasyonê (bi înglîzî: decarboxylation) dest pê dike. Bi dekarboksîlasyonê, yek ji sê karbonên pîruvatê bi şêweyê karbona dîoksîd ji pîruvatê tê qetandin.Di dirêjiya bahenaseya xaneyê de cara pêşîn di vê gavê de CO2 tê berdan.[3]
2. Pêkhateya dukarbonî ya ji pîruvatê mayî, tê oksandin û asetat (CH3COO-, asîda asedî ya bi şeweyê îyon) peyda dibe. Elektronên hatine berdan tên guhaztin bo NAD+, enerjî bi şêweyê NADH tê embarkirin.[3]
3. Koenzîm A (CoA) bi bendê kovelendî bi navbeynkariya atoma sulfurê (kukurt), bi asetatê ve tê girêdan û asetîl CoA peyda dibe. Koenzîm A (Co A) ji vîtamîna B5, asîda pantotenî (bi înglîzî: pantothenic acid) tê çêkirin.[7]
Karlêka giştî ji bo dekarboksîlasyona pîruvatê
Encama oksandina pîrûvatê
Glukoza ko di qonaxa glîkolîzê de hatibû hilweşandin bo 2 pîruvatan, di kotahiya karlêka oksandina pîruvatê de , êdî bûye 2 komên asetîl û 2 molekulên karbona dîoksîd. Herwisa di vê gavê de ji molekulek glukozê heta niha 2 NADH dema glîkolîzê û 2 NADH jî dema çêbûna asetîl CoA de bi tevahî 4 NADH çêbûye.[6] Ango ji bo her molekulek glukozê, oksandina pîruvatê 2 caran rû dide.
2 Pîruvat + 2 NAD+ + 2 CoA → 2 asetîl CoA + 2 NADH + 2 CO2+ 2H+
NADH di qonaxa zincîra guhaztina elektronan de ji bo çêkirina ATP tên bikaranîn.[1] Di hanaseya xaneyê de erkê asetîl CoA, guhaztina koma asetîl e. Koma asetîl a ji pîruvatê peyda bûye ji aliyê asetîl CoA ve tê guhaztin bo qonaxa çerxa Krebs a xanehenaseyê.[7]
Pêvajoya çêbûna ARN an jî proteîn ji zanyariyên li ser beşek ADN-yê de kodkirî wekî derbirîna gen (bi înglîzî: gene expression) tê navkirin.[1]
Berhema derbirîna gen bi gelemperî proteîn e. Proteîn bi navbeynkariya ARN-peyamberê di rîbozoman de bi pêvajoya wergeranê tê çêkirin. Lê dibe ko hin caran jî berhema derbirîna gen ne proteîn, lê ARN-yên nayên wergerandin (ARN-yên nekodkirinê) bin. Wekî mînak, ARN-guhêzer, ARN-rîbozomî, ARN ya piçûk a navikê (bi înglîzî: small nuclear RNA (snRNA)).[2]
Pêwendiya gen, ADN û proteînan
Gen yekeyek ADN-yê ko zanyariyên ji bo çêkirina fîrepeptîdek an jî ARN-yek lixwe digire.[3]
Piraniya genan, zanyariyên ji bo avakirina proteîn lixwe digirin, zanyariyên bomaweyî bi şeweyê kodên bomaweyê tên guhaztin bo molekula ARN-peyamber.[3]
Gen di xaneyê de bi şeweyê rêzeya nukleotîdan, li ser ADN-yê de cih digirin. Kromozomên navikrasteqînan ji ADN û proteîna hîston pêk tên. Li ser kromozomek de dibe ku bi hezaran gen hebin. Ango genên mirov li ser kromozomên mirov de cih digirin.[4]
Pirraniya pêkhateyên xaneyan ji proteînan pêk tê an jî proteîn lixwe digirin û hemû kar û barên xaneyê bi alîkariya proteînan tê rêvebirin. Yek ji komên herî girîngtirînên proteînan enzîm in. Enzîm di nav xaneyê de lêza karlêkên kîmyayî kontrol dikin. Wekî mînak, duhendebûna ADN, çêbûna endamokên nû, ji molekulên sakar çêkirina molekulên aloz, ji xurekan bidestxistina enerjî, têkşikestina molekulên aloz ji bo molekulên sakar, hin mînak in ji bo karlêkên ko enzîm bi kar tînin.[5]
Ango ji bo zîndeçalakiya xwe, pêdiviya xaneyê bi proteînan û enzîman heye. Proteînên her cor xaneyê li gor erk û şêweyê wê ye. Bi derbirîna gen, zanyariyên bomaweyî ji gen ber bi proteînê tên arastekirin.[6] Her yek ji genek ji bo proteînek diyarkirî, kodek taybet dabîn dike.[5]
Xaneyek çav, xaneyek kezebê û xaneyek hestiyê mirov, her çiqas erk û şêweyên wan ji hev gelek cuda bin jî, ji ber ko hemû xaneyên mirov bi dabeşbûna mîtozî ya zîgotê peyda bûne, bi eslê xwe hejmar û rêzeya ADN-yên hersê cor xaneyan jî heman in. Ji bilî hin istisnayan di hemû laşexaneyên (bi înglîzî: somatic cells) mirov de hejmar û rêzeya ADN-yê heman e. Heke hejmar û rêzeya ADN-yên hemû xaneyan heman bin, divê hemû xane heman genan lixwe bigirin.[7] Hema hemû xaneyên laş 46 kromozom lixwe digirin, ango di her xaneyek de 46 molekulên ADN-yê heye.
Mînakên ji bo hin istisnayan, xirokên sor û xaneyên koendama bergiriyê ne. Xirokên sor yek ji corek xaneyên xwînê ne. Gava di moxê hestî de tên berhemkirin xirokên sor ji her wekî mîna xaneyek asayî, xwediyê endamok û navik in, lê xiroka sor a pêgihîştî bênavik e, ango ADN lixwe nagire. Xirokên spî yên xwînê jî corek xaneyên xwînê ne. Di laş de li dij hokarên nexweşiyê bergiriya laş dabîn dikin. Hin corên xirokên spî, ji bo berhemkirina dijeten, rêzeya ADNyên xwe diguherînin.
Bi pêvajoya derbirîna gen, ji zanyariyên bomawebabet (genotîp), rûxsarebabet (fenotîp) peyda dibe. Bi rêbaza libergirtinê gen bi gelemperî bi şêweyê ARN-peyamber tê kopîkirin. ARN-peyamber di qonaxa wergeranê de ji bo çêkirna proteîn tê bikaranîn.[8] Proteîna nû çêbûyî an tevlê pêkhateya xane û şaneyên laş dibe, an jî di laş de wekî enzîm, dijeten, hormon hvd tê bikaranîn.
Gavên bingehîn ên ji bo derbirîna gen;
1. Enzîma ARN polîmeraz, beşek zincîra ADN ya qalib ji bo çêkirina molekula ARN-yê bi kar tîne. Kopîkirina rêzeya beşek nukleotîdên ADN-yê wekî libergirtin tê navkirin. Ango ji bo derbirîna gen, gava yekem qonaxa libergirtinê ye.[9]
2. Di xaneyên navikrasteqînan de, ARN-destpêk di navikê de tê sererastkirin, beşên întron ji ARN-yê tê cihêkirin, egzon bi hev re tên girêdan.
3.Rêzeya ARN-peyamber ji bo çêkirina molekulên proteînê tê bikaranîn. Asîdên amînî li gor kodonên ARN-yê bi avakirina bendên kîmyayî, li dû hev rêz dibin. Ango rêzeya nukleotîdên ADN û ARN-yê rêza zîncîra taybet a asîdên amînî diyar dike. Ji rêzeya ARN-peyamberê di rîbozoman de çêkirina proteîn, wekî wergeran tê navkirin. Proteîna hatî çekirin jî wekî berhema genê tê navkirin.[9]
Bi alîkariya ARN-polîmeraz û bi bikaranîna bazên temamker, li ser zincîra qalib a ADN-yê de çêkirina ARN, wekî libergirtin tê navkirin.[10] Ango bi libergirtinê, beşek ji zincîra nukleotîdên ADN-yê ji bo çêkirina zîncîra ARN-yê tê kopîkirin.[11]
Heke beşa ADN-yê ji bo ARN-ya şîfre dide proteînan hatibe libergirtin (kopîkirin), ARN-ya nûçêbûyî wekî ARN-peyamber tê navkirin. ARN-peyamber (bi înglîzî: messenger RNA), ARN-ya kodkirinê ye. ARN-peyamber, di qonaxa wergeran de, ji bo çêkirina proteîn wekî qalib kar dike.
Ji libergirtina ADN-yê de ARN-yên nekodkirinê jî tên çêkirin. ARN-guhêzer, ARN-rîbozomî, ARN-ya mîkro (bi înglîzî: microRNA), ARN-ya piçûk a navikê (bi înglîzî: small nuclear RNA), ARN-ya piçûk a navikokê (bi înglîzî: small nucleolar RNA) û rîbozîm (bi înglîzî: ribozymes) ARN-yên nekodkirinê ne. Hemû corên ARN di çêkirin, sererastkirin û guherîna proteînan de alîkarî dikin.
Çalakiyên ji bo libergirtinê ji aliyê enzîma ARN-polîmeraz ve tê birêvebirin.[12] ARN-polîmeraz di navbera rîbonukleotîdan de bendên fosfodîester didin avakirin, bi vî awayî zincîra ARN-yê peyda dibe.[13]
Di navikseretayîyan de yek cor ARN-polîmeraz, di xaneyên navikrasteqînan de sê cor ARN-polîmeraz kar dikin bo rûdana libergirtinê.[2] Dema libergirtinê de ARN-polîmeraz zincîra qalib bi aresteya serê 3 ber bi serê 5 ve (3’-5’) bi kar tîne û şerîdek ARN-ya ko nukleotîdên wê temamkerên nûkleotîdên ADN-ya qalip e çêdike. Rêzeya nukleotîdên ARN-ya nûçêbûyî û ya zincîra kodkirinê heman in. Loma ev zincîra ADN-yê wekî zincîra kodkirinê (bi înglîzî: coding strand) tê navkirin.[14] Lê li dewsa Tîmîn, li zincîra ARN-yê de nukleotîda Urasîl heye.[15]Bi kurtasî, di xaneyê de libergirtin ji van gavên serekî pêk tê:
1. ARN-polîmeraz û hokarên gelemperî yên libergirtinê li beşa promoter a ADN-yê ve tên girêdan.
2. ARN-polîmeraz bi têkşikestina bendên hîdrojenê yên di navbera bazên temamker ên ADN-ya lûlpêça hevcot, zîncîrên ADN-yê ji hev cihê dike û bilqa libergirtinê ava dike.
3. ARN-polîmeraz rîbonukleotîdên ko temamkerên bazên zincîra qalib in, li ser zîncîra ADN-ya qalip zêde dike.
4. Bi alîkariya ARN-polîmeraz, di navbera rîbonukleotîdan de bendên fosfodîester tên avakirin bi vî awayî şerîda ARN-ya ji zincîra şekir-fosfat peyda dibe.
5. Bendên hîdrojenê yên di navbera zincîra qalib a ADN-yê û zincîra ARN-ya nûçêbûyî têk dişkên, ARN-ya nûçêbûyî serbest dimîne.
Heke xane yek ji xaneyên navikrasteqîn be, ARN-ya nûçêbûyî wekî ARN-destpêk tê navkirin. ARN-destpêk, piştê hin sererastkirin û guhertinan çalak dibe.[16] Lê di xaneyên navikseretayî de ARN-ya nûçêbûyî rasterast tevlê çalakiya çêkirina proteînan dibe.
Piştê libergirtinê, zanyariyên li ARN-peyamber a ji ADN-yê hatiye kopîkirin, ji bo avakirina rêzeyek taybet a firêpeptîd (bi înglîzî: polypeptide) tê bikaranîn. Ji bo wergeranê, ARN-peyamber wekî qalib kar dike. Wergeran di rîbozoman de rû dide.[17] Bi wergeranê, asîdên amînî di rîbozomê de, li gor zanyariyên bomaweyî yên ADN-yê ko bi qonaxa libergirtinê bi şêweyên rêzeya kodonan derbasî ARN-peyamberê bibûn, bi rêzeyek taybet bi hev re tên girêdan û polîpeptîdek peyda dibe.[18] Çêbûna bendên peptîdî yên navbera asîdên amînî yên polîpeptîdê ji aliyê ARN-rîbozomî ve tê hankirin.[18] Asîdên amînî yên bo çêkirina poroteînek nû ji sîtoplazmaya xaneyê tê bi destxistin.
Di pêvajoya wergeranê de li gel ARN-peyamber, pêdivî bi rîbozom, ARN-guhêzer, asîda amînî, hin hokarên proteînî (hokarên destpêkirinê, hokarên dirêjbûne, hokarên berdanê) û hinek enzîman heye.
Dema wergeranê, bazên (nukleotîd) ARN-peyamberê sisê bi sisê tên xwendin. Li zincîra ARN-peyamber de rêzeya sê nukleotîdên li dû hev, wekî kodon tê navkirin. Kodon asîdek amînî destnîşan dike, ango kodon ji bo asîda amînî şîfre ye.[11] Wekî mînak kodona ji bo asîda amînî ya fenîlalanîn, 5'- UUC- 3' ye.
Xaneyên bakteriyan navik lixwe nagirin, ADN û rîbozomên wan di nav sîtoplazmayê de cih digirin, loma hê ko libergirtin bi dawî nebûye, li ARN-peyamberê wergeran jî dest pê dike. Di xaneyên navikrasteqînan de libergirtin di navikê de rû dide, ARN-peyamber derbasî sîtoplazmayê dibe, paşê wergeran dest pê dike.[19]
Di xaneyên navikrasteqîn (êkaryot) de her ARN-peyamberek tenê ji bo çêkirina yek corek proteîn şîfreya zanyariyên bomaweyî lixwe digire. Rîbozom kulavê 5′ nas dike, li ser ARN-peyamberê ber bi serê 3′ cih diguherîne, gava rastê kodona AUG yê tê, wergeran dest pê dike, şîfre ji bo çêkirina proteînek tê bikaranîn. Ango ji bo her corek proteîn, ARN-peyamberek bi genek taybet şîfrekirî tê avakirin.[20]
Rêkxistina derbirîna gen
Çi di zîndewerek tekxaneyî de, çi jî di zîndewerek firexaneyî de her xane kontrol dike ka derbirîna gen çi çaxê û çiqas rû bide.
Ji bo derbirîna gen pêdivî bi enerjî û cih heye. Loma heke di xaneyê de derbirîna hemû genan hertim rû bida, dibe ko enerjiya xaneyê têr nekira.
ADN-ya pêçayî di beşa ko libergirtin wê rû bide, vedibe, lê heke libergirtina hemû genan di carek de rû bida, divê hemû ADN-yên pêçayî vebûna. Di rewşek wisa de valahiyên nav xaneyê bi şerîdên ADN-yê tijî dibû û ji bo çalakiya endamokên xaneyê bi têra xwe cih nedima.
Herwisa heke di xaneyê de hemû gen bi carek ve bihatana derbirîn, qebareya xaneyê ji bo proteînên hatine çêkirin têr nedikir. Loma, divê di xaneyê de mekanîzmayek kontrolê hebe û biryar bide ka kîjan gen, kînga û çiqas tê derbirîn. Xirabûna mekanîzmaya kontrolê, şêrpence jî tê de, rê li ber gelek nexweşiyan vedike.[7]
Di xaneyê de hemû gen bi hev re nayên derbirîn, pêdiviya xaneyê bi kîjan proteînan an jî ARN-yan hebe, tenê derbirîna wan genan rû dide, genên din girtî dimînin.
Wekî mînak, hormona însulîn tenê di hinek xaneyên pankreasê de, enzîma pepsînojen jî di xaneyên gedeyê de tên berhemkirinrin. Di xaneyên pankreasê de genên bo berhemkirina pepsînojenê jî heye lê ji ber ko ev gen ne vekiri ye, xaneyên pankreasê pepsînojen berhem nakin. Lê genê ji bo çêkirina însulînê vekirî ye (çalak e), loma xaneyên pankreasê dikarin însulîn çêbikin. Bi heman awayê, di xaneyên gedeyê de jî genên bo berhemkirina pepsînojenê çalak in, lê genên bo berhemkirina însulînê girtî ne. Mînakek din jî proteîna hemoglobîn e. Tevê ko hemû xaneyên laş gena ji bo çêkirina hemoglobînê lixwe digirin, lê hemoglobîn tenê di xirokên sor ên xaneyên xwînê de heyê, Di xaneyên din de gena hemoglobînê girtî ye.[21]
Xaneyek kêm caran ji sedî 10ê genên xwe yekcar bikar tîne. Ango pirraniya genên xaneyê bi gelemperî bêdeng in. Gelek hokar bandor li xaneyê dikin ko kîjan gen, kînga were bikaranîn. Dibe ko hokar şertû mercên nav sîtoplazmayê be, şileya derveyê xaneyê be an jî cora xaneyê be. Ango derbirîna gen ji aliyê hin hokaran ve kontrolkirin. Hokarên bo kontrolkirina derbirîna gen, dibe ko derbirîna gen bide destpêkirin, pêvajoya derbirîna gen hêsantir bike, hêdî bike an jî rawestîne.[18]
Xane gava hevceyê berhemên genê ye, ji bo rêkxistina hevsengiyê di navbera berhemkirina proteîn û xerckirina enerjiyê de gelek stratejiyan bi kar tîne. Rêbazên ko ji bo bi cih anîna vê erkê de cih digirin, bi tevahî wekî rêkxistina derbirîna gen tê navkirin.
Hinek corên gen di xaneyên çalak de hertim hema bi rêjeyek sabit tên derbirîn. Ev genan ji bo berdewamiya çalkiyên asayî yên xaneyê pêwist in. Wekî mînak, genên ARN-rîbozomî ji bo avakirina rîbozoman pêwist in.
Di xaneyên zindî de hertim pêdivî bi çêkirina proteînan heye, rîbozom jî ji bo çêkirina proteîn kar dikin, loma di xaneyê de divê genên bo şîfrekirina ARN-rîbozomî hertîm vekirîbin.[22]
Lê derbirîna hinek genan tenê di bin şert û mercên taybet de rû dide. Dibe ko ev rewşên taybet, di dema peresîn, geşebûn an jî gorankariya xaneyê de be. Wekî mînak berî ko xane dabeş bibe, ji bo zêdekirina hejmara endamok, enzîm û rêjeya sîtoplazmayê pêdiviya wê bi proteînan heye loma bi gelemperî di xaneyê de di qonaxa S û qonaxa G2 ya înterfazê de derbirîna genan zêdetir dibe.
Her çend mekanîzmayên ku derbirîna genan rêk dixin pir û tevlihev in jî, encama dawî ev e ku xane dema ku hewcedariya wan bi proteînan hebin, gen derdibirînin.[22]
Ji bo rêkxistina derbirîna gen, du mekanîzmaya konrolê kar dikin. Di rêkxistina erenî (bi înglîzî: positive regulation) de, gen girtiyê, heta ko sinyalên erenî wernegire çalak nabe û derbirîn dest pê nake. Di rêkxistina erenî de ji bo vekirina gen, pêdivî bi çalakkerek (bi înglîzî: activator) heye.
Di rêkxistina neyînî de gen vekirî ye û çalak e lê hin hokarên rêgir (hokarên westîner) (bi înglîzî: inhibitory factors) bi genê ve giredayî ne û nahêlin derbirîna gen rû bide. Di rêkxistina neyînî de bi gelemperî gen ji aliyê pestanbarek (bi înglîzî: repressor) hatiye girtin û gava pestanbar jê tê dûrxistin, derbirîna gen jî dest pê dike.[2]
Zîndewerên navikseretayî (prokaryot) zîndewerên tekxaneyî ne û bênavik in, loma ADN-yên wan di nav sîtoplazmayê de cih digire. Ji bo çêkirina proteîn, pêvajoyên libergirtin û wergeran hama di heman demê de rû didin. Gava bi têra xwe proteîn hat berhemkirin, libergirtin radiweste. Wekî encam, kontrola serekî ya ji bo kîjan proteîn û çiqas proteîn tê çêkirin, bi rêkxistina libergirtina ADN-yê pêk tê. Gava pêdivî bi zêdetirîn proteîn hebe, rêjeya libergirtinê zêde dibe. Ango di xaneyên navikseretayiyan de derbirîna gen bi gelemperî di asta libergirtinê de tê kontrolkirin.
Di xaneyên navikseretayî de rêkxistina derbirîna genan de rêbazek cuda jî tê bikaranîn, kontrola derbirîna gen ji aliyê operon ve tê rêvebirin.
Di xaneyê de karlêkek kîmyayî bi gelek gavên li pêyhev rû dide. Ango ji bo karlêkek kîmyayî dibe ko pêdivî bi çendan cor genan hebe.
Bi rêbaza operon, rêkxistina libergirtina hemû genên kodên enzîmên katalîzkirina karlêkên kîmyayî yên li dû hev in, bi hevdemkî tên kontrolkirin. Bi vî awayî heke pêdivî hebe, hemû enzîm bi carek ve tên berhemkirin û heke pêdivî tune be vê gavê çêkirana hemû enzîmên karlêkê bi carek ve tên rawestandin, gen bêdeng dibin. Mekanîzmaya kontrola koma genên têkîldar rê dide bakteriyan ko li hember guherînên hawirdorê, bi lez bertek nîşan bidin.[23]
Di xaneyên navikrasteqînan de ADN di navikê de ye û li wir bi libergirtine ARN-peyamber çêdibe. ARN-peyamber derbasî sîtoplazmayê dibe, di rîbozoman de tê wergerandin bo çêkirina proteîn. Pêvajoyên libergirtinê û wergeranê bi parzûna navikê ji hev hatiye cihê kirin.
Di xaneyên navikrasteqînan de rêkxistina derbirîna gen di gelek qonaxan de rû dide.[24]
1.Dema ADN vedibe û bi hokarên libergirtinê ve girê dibe,
2.Di qonaxa libergirtinê de,
3.Piştî libergirtinê di qonaxa sererastkirina ARN-peyamber a destpêk de,
^Allison, L. (2007). Fundamental Molecular Biology. Blackwell Publishing Limited.
^ Jump up to:abcClark, D. P. (2005). Molecular biology. Elsevier Academic Press.ISBN: 0-12-175551-7
^ Jump up to:abBerk, A., Kaiser, C. A., Lodish, H., Amon, A., Ploegh, H., Bretscher, A., & Krieger, M. (2005). Molecular Cell Biology (5th ed.). CA.
^Jones, M., Fosbery, R., Gregory, J., & Taylor, D. (2014). Cambridge International AS and A Level Biology Coursebook with CD-ROM (4th ed.). Cambridge, MA: Cambridge University Press
^ Jump up to:abBetts, J., Desaix, P., Johnson, E., Johnson, J., Korol, O., & Kruse, D. et al. (2017). Anatomy & physiology. Houston, Texas: OpenStax College, Rice University,
^Campbell, N. A., & Reece, J. B. (2008). Biology (8th ed.). San Francisco, CA: Benjamin-Cummings Publishing Company.
^ Jump up to:abcRye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,
^Losos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
^ Jump up to:abHartl, D. L., & Jones, E. W. (1998). Genetics: Principles and analysis. Sudbury, MA: Jones and Bartlett. ISBN 0-7637-0489-X
^S.W.D. and King, R.C. (2002) A dictionary of genetics. 7th. ed. New York, NY, USD: Oxford University Press.
^ Jump up to:abSolomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
^Robert F. Weaver(2010).—5th ed.Published by McGraw-Hill
^Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). NY: Garland Science.
^Starr, C., & McMillan, B. (2010). Human Biology (8th ed.). Pacific Grove, CA: Brooks/Cole Publishing Company.
^Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
^David L. NelsonMichael M. Cox(2013). Lehninger Principles of Biochemistry. : W. H. FREEMAN AND COMPANY • New York ISBN-13: 978-1-4641-0962-1
^Lawrence, E. (2005). Hendersons dictionary of biology. Harlow: Pearson/Prentice Hall. ISBN 978-0-13-127384-9
^ Jump up to:abcStarr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.
^Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
^W T. Godbey, in Biotechnology and its Applications (Second Edition), 2022
^Waugh, A., Grant, A., Chambers, G., Ross, J., & Wilson, K. (2014).Ross and Wilson anatomy and physiology in health and illness (12th ed.). Edinburg: Elsevier.
^ Jump up to:abCullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
^Ralston, A. (2008) Operons and prokaryotic gene regulation. Nature Education 1(1):216
^Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.