Celadet Alî Bedîrxan

Me zanî ko xweseriya me, di zimanê me de ye û em bi tenê bi hînbûna xwendin û nivîsandina zimanê xwe û parastina wî, di civata miletan de, wek miletekî xweser dikarin bijîn û payedar bin.
Celadet Alî Bedîrxan (1893-1951)
Showing posts with label ATP. Show all posts
Showing posts with label ATP. Show all posts

2024/04/28

Oksandina pîruvatê

 

Oksandina pîruvatê an jî dekarboksîlasyona pîruvatê (bi înglîzî: pyruvate oxidation-pyruvate decarboxylation), rêçeyek kîmyaya zindî ye ko ji bo çêbûna asetîl CoA, pîruvat tê oksandin (hilweşandin) bo koma asetîl û karbona dîoksîdê.

Di hebûna oksîjenê de pîruvatên ko di glîkolîzê de hatine çêkirin tên oksandin, bi vî awayê ji pîruvatê he pirtir enerjîya ATP tê bidestxisitin. Di xaneyên navikrasteqînan de karlêkên bo oksandina pîruvatê di hundirê mîtokondriyê de rû didin. Heman karlêk di xaneyên navikseretayî de di sîtoplazmayê de û li ser rûyê navî yê parzûna xaneyê de rû didin.[1]

Xane enerjiya pîruvatê bi du qonaxan bi dest dixe, di qonaxa yekem de pîruvat tê oksandin û pêkhateyek dukarbonî û karbona dîoksîd peyda dibe. Di heman demê de NAD+ jî tê kêmkirin bo NADH-ê.

Di qonaxa duyem de awêteya du karbonî bi karlêkên çerxa Krebs tê oksandin bo karbona dîoksîdê.

Pîruvatên bi rêçeya glîkolîzê çêbûne, nikarin rasterast tevlê qonaxa paşê ya bahenaseyê bibin, divê peşî ji pîruvatê molekulek karbona dioksîd were dûrxistin.[2]

Pîruvat bi guhaztina çalak ji sîtoplazmayê tê guhaztin bo mîtokondriyê.[3]

Di xaneyên navikrasteqîn de pîruvat di beşa matriks a mîtokondriyê de tê hilweşandin bo asetîl CoA.[4][5]

Ji ber ko çêbûna asetîl CoA, qonaxa glîkolîzê bi çerxa Krebs re girê dide, karlêka oksandina pîruvatê wekî karlêka guhaztinê (bi înglîzî: transition reaction) an jî karlêka navber (bi înglîzî: bridge reaction) jî tê navkirin.[5]


Gavên oksandina pîruvatê

Karlêka oksandina piruvatê ji aliyê enzîma pîruvat dehîdrogenaz ve (bi înglîzî: pyruvate dehydrogenase) tê hankirin. Pîruvat dehîdrogenaz kompleksek fireenzîm e (bi înglîzî: multienzyme complex) û ji 72 zincîrên polîpeptîd pêk tê.[6]

Kompleksa fireenzîm sê karlêkan han dike.

1.Oksandina pîruvatê bi karlêka dekarboksîlasyonê (bi înglîzî: decarboxylation) dest pê dike. Bi dekarboksîlasyonê, yek ji sê karbonên pîruvatê bi şêweyê karbona dîoksîd ji pîruvatê tê qetandin.Di dirêjiya bahenaseya xaneyê de cara pêşîn di vê gavê de CO2 tê berdan.[3]

2. Pêkhateya dukarbonî ya ji pîruvatê mayî, tê oksandin û asetat (CH3COO-, asîda asedî ya bi şeweyê îyon) peyda dibe. Elektronên hatine berdan tên guhaztin bo NAD+, enerjî bi şêweyê NADH tê embarkirin.[3]

3. Koenzîm A (CoA) bi bendê kovelendî bi navbeynkariya atoma sulfurê (kukurt), bi asetatê ve tê girêdan û asetîl CoA peyda dibe. Koenzîm A (Co A) ji vîtamîna B5, asîda pantotenî (bi înglîzî: pantothenic acid) tê çêkirin.[7]

Karlêka giştî ji bo dekarboksîlasyona pîruvatê

Encama oksandina pîrûvatê

Glukoza ko di qonaxa glîkolîzê de hatibû hilweşandin bo 2 pîruvatan, di kotahiya karlêka oksandina pîruvatê de , êdî bûye 2 komên asetîl û 2 molekulên karbona dîoksîd. Herwisa di vê gavê de ji molekulek glukozê heta niha 2 NADH dema glîkolîzê û 2 NADH jî dema çêbûna asetîl CoA de bi tevahî 4 NADH çêbûye.[6] Ango ji bo her molekulek glukozê, oksandina pîruvatê 2 caran rû dide.

2 Pîruvat + 2 NAD+ + 2 CoA → 2 asetîl CoA + 2 NADH + 2 CO2+ 2H+

NADH di qonaxa zincîra guhaztina elektronan de ji bo çêkirina ATP tên bikaranîn.[1] Di hanaseya xaneyê de erkê asetîl CoA, guhaztina koma asetîl e. Koma asetîl a ji pîruvatê peyda bûye ji aliyê asetîl CoA ve tê guhaztin bo qonaxa çerxa Krebs a xanehenaseyê.[7]


Çavkanî[biguhêre | çavkaniyê biguhêre]

  1. Jump up to:a b Losos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
  2. ^ Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  3. Jump up to:a b c Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
  4. ^ Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  5. Jump up to:a b Parker, N., Schneegurt, M., Tu, A. T., Forster, B. M., & Lister, P. (2016). Microbiology. Houston, Texas: Rice University.
  6. Jump up to:a b Solomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
  7. Jump up to:a b Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,

2024/04/18

Genîn

 

Genîn (bi înglîzî: fermentation), ji bo bidestxistina ATP-yê di bin şert û mercên nebûna oksîjenê de ji aliyê hin bakterî û karokên havênê, bi navbeynkariya enzîman hilweşandina molekulên wekî glukoz û fruktoz.[1]

Di nebûna oksîjenê de pîruvatên bi rêçeya glîkolîzê hatine çêkirin, bi hin karlêkên kîmyayî tên guhertin bo madeyên din. Glîkolîz û karlêkên guherîna pîrûvatê bo madeyen endamî ko di heman demê de NADH jî tên oksandin bo NAD+, bi tevahî wekî genîn tê navkirin.[2]

Ango genîn ji du qonaxan pêk tê, di qonaxa peşîn de glukoz bi rêçeya glîkolîzê tê parçêkirin bo du molekulên pîruvatê. Di glîkolîzê de ji molekulek glukozê safî 2 ATP tê bidestxistin. Di rêçeya glîkolîzê de pêdivî bi oksîjenê tune, lê ji bo berdewamiya karlêkê divê bi têra xwe koenzîma NAD+ hebe. Di qonaxa duyem a genînê de bi oksandina NADH-ê, ji bo glîkolîzê NAD+ tê dabînkirin. Koenzîma NAD+ di karlêkên glîkolîzê de wekî wergira elektronan kar dike. Ango bi rêçeya genînê, xane dikare bi awayekî domdar glukozê hilweşîne û ATP bi dest bixe.[3]

Di rêçeya piştî glîkolîzê de ATP nayê berhemkirin, lê ji bo berdewamiya glîkolîzê NAD+ tê dabînkirin.[2]

Li gor bahenaseya xaneyê (bi înglîzî: aerobic respiration), di rêçeya genînê de ji ber du sedeman, pir hindik ATP tê çêkirin.

Sedema yekem, glukoz heta av û karbona dîoksîdê nayê oksandin. A duyem jî, NADH ên di glîkolîzêde hatine çêkirin ji bo çêkirina ATP-yan nayên bikaranîn. Loma di rêçeya genînê de tenê 2 ATP tê qezenckirin.[4]

Ji genînê re hin caran “glîkolîza bêoksîjenî” (bi înglîzî: anaerobic glycolysis) tê gotin. Glîkolîza bêoksîjenî rêçeya kîmyayî ye ko pîruvat tê guhertin bo laktat an jî etanolê û NADH jî tê oksandin bo NAD+.[5]

Beyî ko hay ji erkên karokên havênê an jî bakteriyan hebin, mirovahî bi hezaran salan di pîşesaziyê de ji bo çêkirina tirşînan, vexwarinên alkolî, û hvd genîn bi kar anîn. Kîmyagerê fransî Louis Pasteur di sala 1860î de da ravekirin ko çêbûna vexwarinên alkolî û tirşî bi navbeynkariya bakterî û karokên havênê, bi pêvajoya genînê rû dide.[3]

Ne tenê bakterî û karokên havênê, lê di hin xaneyên riwek û ajalan de jî genîn rû dide.

Piştî glîkolîzê an bahenase dest pê dike an jî genîn

Ji ber ko di beşa yekem a glîkolîzê de NAD+ wekî wergira elektron kar dike û di xaneyê de rêjeya wê kêm dibe, NADH-a di beşa duyem a glîkolîzê de hatiye çêkirin, divê dubare were bikaranîn bo çêkirna NAD+-ê. Heke di xaneyê de bi têra xwe NAD+ tune be, glîkolîz hêdî dibe an jî radiweste.[6]

Heke di hawirdorê de bi têra xwe oksîjen hebe, bi rêçeya bahenaseyê elktronên ji NADH-ê ji aliyê oksîjenê ve tên wergirtin û NADH tê oksandin bo NAD+.

Di nebûna oksîjenê de an ji di hawîrdora kêmoksîjenî de, gelek zîndewer bi rêçeya genînê ji NADH-ê elektron diguhazînin pîruvatê û NAD+ bi dest dixin.[7]

Corên genînê

Corên genînê li gor berhema dawî ya ji pîruvatê hatî çêkirin tên navkirin. Herçiqas gelek corên genînê hebin jî ji vana genîna asîda laktî û genîna alkolî, genînên herî berbelav in.[8]

Genîna asîda laktî

Di rêçeya genîna asîda laktî de, pîruvat ji aliyê NADH ve tê kêmkirin û laktat (asîda laktî) peyda dibe.
 Gotara bingehîn: Genîna asîda laktî

Di rêçeya genîna asîda laktî de, pîruvat ji aliyê NADH ve tê kêmkirin û laktat (asîda laktî) peyda dibe.[8] Oksandina NADH ji aliyê enzîma laktat dehîdrogenaz (bi înglîzî: lactate dehydrogenase) ve tê hankirin (katalîzekirin).[9]

Di genîna asîda laktî de, ji bo elektronan, wergira dawîn pîruvat e.[10]

Bi genîna laktî ya hin bakterî û karokan, ji şîrmast û penêr tê çêkirin.[8] Xaneyên peykeremasûlkeyên mirov jî dikarin di kêmasiya oksîjenê de, bo demek kurt, bi genîna asîda laktî ATP bi dest bixin. Piraniya laktata di xaneyên peykeremasûlke de çêbûyî, bi navbeynkariya xwînê tê guhaztin bo kezebê û ji bo çêkirina glukozê tê bikaranîn.[9]

Genîna alkolî

Genîna alkolî ji glîkolîz û karlêkên ji bo hilweşendina pîruvatê bo etanol û karbona dîoksîdê pêk tê.
 Gotara bingehîn: Genîna alkolî

Hin bakterî û karok di hawirdora bêoksîjenî de bi genîna alkolî ATP bi dest dixin. Genîna alkolî ji glîkolîz û karlêkên ji bo hilweşendina pîruvatê bo etanol û karbona dîoksîdê pêk tê. Bi oksandina NADH, ji bo berdewamiya glîkolîzê NAD+ tê dabînkirin.

Mirovahî bi hezaran salan e rêçeya genîna alkolî li gel tirşkirina hevîrê nan, ji bo çêkirina vexwarinên alkolî yên wekî bîre û şereb bi kar tînin.[8]

Di rêçeya genîna alkolî de karlêka yekem ji aliyê enzîma pîruvat dekarboksîlaz (bi înglîzî: pyruvate decarboxylase) ve tê hankirin. Ji pîruvatê koma karboksîlê diqete û wekî gaza karbona dioksîd tê berdan. Wendakirina karbona dioksîd, qeberaya pîruvatê bi qasî karbonek kêm dike û molekula dukarbonî ya bi navê asetaldehîd çêdibe. Di gava duyem a genîna alkolî de, bi hankirina enzîma alkol dehîdrogenaz (bi înglîzî: alcohol dehydrogenase ) NADH tê oksandin bo NAD+ û asetaldehîd jî bi wergirtina elektronan tê kêmkirin û etanol peyda dibe.[11] Ango di genîna alkolî de asetaldehîd ji bo wergirtina elektronan, wergira dawî ye.

Genîn bi kurtî

  • Hin bakterî û karokên havênê tenê bi rêçeya genînê ATP bi dest dixin.
  • Di karlêkên genînê de ji bo domandina glîkolîzê, molekulek endamî wekî wergira dawî, elektronan werdigire.[11]
  • Di genînê de zincîra guheztina elektronan cih nagire.
  • Di rêçeya genînê de ji molekulek glukozê, tenê di qonaxa glîkolîzê de 4 molekul ATP tê bidestxistin, lê ji ber ko bo glîkolîzê 2 ATP tên xerckirin ji genîna glukozek safî 2 ATP tên qezenckirin. Piştî glîkolîzê dema oksandina NADH-ê de ATP çênabe.
  • Ji ber ko enerjiyek hindik tê bidestxistin, tenê hin zîndewerên tekxaneyî dikarin ji bo dabînkirina ATP-yê rêçeya genînê wekî çavkaniya enerjiyê bi kar bînin.[12]
  • Hin xaneyên ajalan jî bi genînê ATP bi dest dixin.
  • Di genînê de ATP bi rêçeya fosforîkirina di asta substradê de (bi înglîzî: substrate-level phosphorylation) tê çêkirin.[8]
  • Tevî ko elektronên ji glukozê tên berdan, ji aliyê NAD+ ve tên wergirtin û pîruvat peyda dibe, lê elektron cardin tên wergerandin bo molekula endamî ya wekî laktat an jî etanolê. Ango ji molekula endamî elektron belavê hawirdorê an jî derbasî molekulek neendamî (mînak, oksîjen) nabin, di rêçeya genînê de molekula endamî elektronan winda nake.[4]
  • Ji hevîr çêbûna nan, ji şîr çêbûna mast (qatix) û penêr bi genînê rû didin. Herwisa tirşî, bîraşerab jî bi genînê çêdibin.
  • Di genîna asîda laktî de pîruvat ji NADH-ê elektronan digire, bi kêmkirina pîruvatê laktat (asîda laktî) peyda dibe.
  • Di pêvajoya genîna alkolî de pêşî, ji pîruvatê karbona dioksîd tê berdan û asetaldehîd çêdibe, paşê asetaldehîd elektronên NADH-ê werdigire û dibe etenol.[11]

Çavkanî

  1. ^ S.W.D. and King, R.C. (2002) A dictionary of genetics. 7th. ed. New York, NY, USD: Oxford University Press.
  2. Jump up to:a b Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
  3. Jump up to:a b Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  4. Jump up to:a b Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  5. ^ Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). NY: Garland Science.
  6. ^ Solomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
  7. ^ David L. NelsonMichael M. Cox(2013). Lehninger Principles of Biochemistry. : W. H. FREEMAN AND COMPANY • New York ISBN-13: 978-1-4641-0962-1
  8. Jump up to:a b c d e Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
  9. Jump up to:a b Fundamentals of Biochemistry L I F E AT TH E M O L E C U L A R L E V E L. : Voet D.,Voet G.,Pratt C. • John Wiley & Sons, Inc. ISBN-13: 978-0470-54784-7
  10. ^ Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.
  11. Jump up to:a b c Parker, N., Schneegurt, M., Tu, A. T., Forster, B. M., & Lister, P. (2016). Microbiology. Houston, Texas: Rice University.
  12. ^ Starr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.

2024/02/21

Adenozîna trîfosfat

 

Adenozîna trîfosfat an jî adenozîna sêfosfatî (bi înglîzî: adenosine triphosphate) molekula guhêzera enerjiyê ye ko di hemû xaneyên zindî de tê dîtin.

ATP molekulek navbeynkar a gerdûnî ye.[1] Çi cor zîndewer dibe bila be, di xaneyê de ji bo zîndeçalakiyên xwe, ATP bi kar tînin. ATP enerjiya kîmyayî ya ji têkşikestina molekulên xurekê digire û enerjiya xwe ji bo zîndeçalakiyên xaneyê xerc dike.[2]

Karbohîdrat, çewrî û xurekên din rasterast wekî çavkaniya enerjiya xaneyê nayên bikaranîn. Çavkaniya bingehîn a enerjiya xaneyê ATP ye. Di xaneyan de bi henaseya xaneyê enerjiya kîmyayî ya van xurekan ji bo çêkirina ATP tê bikaranîn.[3] Molekulên ATP-yê jî ji bo çalakiyên xaneyê enerjî dabîn dikin. Enerjî ji ber hilweşandina bendên fosfatên ATP-yê peyda dibe.[4]

Pêkhateya ATP-yê

ATP bi eslê xwe nukleotîd e, ji baza adenîn, şekirê rîboz ê pênckarbonî û sê fosfatan pêk tê.

ATP molekulek gerdûnî ye, di xaneyên hemû zîndeweran de bi heman şêweyê ye û bi heman awayê kar dike. ATP bi eslê xwe nukleotîd e, ji baza adenîn, şekirê rîboz ê pênckarbonî û sê fosfatan pêk tê.[5]

Beşa ATP-yê ya ji bazek nîtrojenî û şekirek pênckarbonî pêk te, wekî nukleozît tê navkirin. Di pêkhateya ATP-yê de nukleozîta adenozîn cih digire. Ango adenozîn ji baza adenîn û şekirê pênckarbonî yê rîboz pêk tê. Pêkhateya ATP, li gel adenozîn, sê komên fosfatî jî lixwe digire, loma navê wê, adenozîna trîfosfat (adenozîna sêfosfatî) e.

Ji sê komên fosfatî ya herî nêzikê şekirê rîboz wekî alfa, koma fosfatî ya duyem wekî beta, ya herî dûrê şekirê rîboz jî wekî gama tê navkirin.[6] Bendên koma fosfatên beta û gama-yê bendên bi enerjiya bilind in. Herçiqas enerjiya van bendan zêde be jî, ev herdu bend, bendên lawaz in, bi hêsanî tên şikestin. Lawazbûna bendên navbera komên fosfatî ji ber bargeya negatîvî ya komên fosfatî ye.[7] Bargeyên negatîv hevdû tehn didin. Di molekula ATP-yê de hebûna sê bargeyên negatîv, enerjiya potensiyel a ATP-yê zêde dike. Gava fosfatek ji ATP-yê diqete, enerjiya ji bo xebatên xaneyê jî berdest dibe. Di heman demê de ATP jî hildiweşe bo ADP+ Pi (adenozîna dîfosfat + fosfata neendamî (înorganî) ).[8]

Ji ber ko du fosfatên dawî bi bendên bi enerjiya bilind bi hev re girêdayî ne. Bendên navbera van fosfatan hin caran bi sembola ( ~ ) tên nîşankirin.[3]

Li bin şert û mercên fîzîkî û kîmyayî yên laş de herdu bendên enerjiya bilind a molek ATP-yê bi qasî 14.000 kalorî enerjî lixwe digirin. Ev enerjî ji enerjiya navbera bendên asayî gelek zêdetir e, loma wekî bendên bi enerjiya bilind tên navkirin. Gava pêdiviya xaneyê bi enerjiyê hebe, bendên fosfatî yên bi enerjiya bilind, dikarin bilez ji hev biqetin û enerjiyê dabîn bikin.

Enzîm dikarin bendê di navbera koma fosfatî ya duyem û ya sêyem a molekula ATP-yê hilweşînin. Enzîm koma fosfatî ya hatiye berdan bi molekulek din ve girê dide. Gava koma fosfatî ji molekulek bo molekulek din tê guhaztin, enejiya di bendên wê de hatiye embarkirin jî bi wê re diçe.[9] Aango bi guhaztina fosfatê enerjiya ATP-yê derbasî molekulên din dibe. Molekula bi fosfatê ve hatiyê girêdan, bi enerjiya ji ATP-yê di xaneyê de dixebite.[8] Enerjiya hatiye berdan ji bo çalakiyên xaneyê yên wekî çêkirina molekulên nû, girjbûna masûlkeyan, guhaztina ragihandinên demarî û hvd tê bikaranîn.[5]

ATP çawa enerjî embar dike

ATP molekula bingehîn a enerjiyê ye ko ji bo zindeçalakiyên xaneyê tê bikaranîn.[10] Her çiqas ji bo enerjiya ji ATP-yê tê berdan, bendên fosfatî wekî çavkanî werin nîşankirin jî bi eslê xwe enerjî rasterast ji hilweşîna bendên bi enerjiya bilind ên navbera komên fosfat belav nabe. Enerjiya tê berdan ji ber guherîna potensiyala kîmyayî ya hemû beşên ATP yê.[1] Lê di ATP-yê de êmbarkirina enerjî bi hebûna sê komên fosfatê rû dide. Komên fosfatê bi bargeyê negatîv barkirî ne, loma hevdû then didin. Ji ber tehndana molekulan, bendên fosfoanhîdrat (bi înglîzî: phosphoanhydride bonds) ên komên fosfatê girê didin, lawaz in û xweragir nîn in.[11] Bendên navbera komên fosfatan bi mijarek hindik a enerjiya çalakkirinê dikarin bi hîdrolîzê hilweşin. Gava komek fosfatê ji ATP-yê digete enerjî jî tê berdan. Ji molek ATP-yê 7.3 kcal enerjî tê berdan, ev enerjî ji bo zîndeçalakiyên xaneyê tê bikaranîn.[12]

Çerxa ATP-yê

Xane biberdewamî,bênavber ATP bi kar tîne, loma divê li dewsa ATP-yên hatine xerckirin, yên nû were dabînkirin.

Dibe ko di xaneyêk masûlkeyê de di çîrkeyek de bi qasî 10 mîlyon ATP werin xerckirin û ji nûve werin çêkirin.[8] Di heman demê de bi henaseya xaneyê, molekulên sakar ên xurekê tên hilweşandin. Bi xanehenaseyê enerjî dabîn dibe, ev enerjî ji bo fosforîkirna ADP-yê tê xerckirin û hê pirtir ATP tê çêkirin. Laşê mirov rojê bi qasî 45 kîlogram ATP hîdrolîz dike, lê ji ber ko her molekulek ATP rojê bi qasî 10 hezar caran çêdibe û hildiweşe, laşê mirov tu car 45 kg ATP lixwe nagire.[13]Çêbûn û hilweşîna ATP bi awayê çerxî rû dide. Ji ADP + Pi çêbûna ATP-yê, karlêkek wizemij e (bi înglîzî:endergonic reaction) û ji aliye karlêkên wizederkiriner (bi înglîzî: exergonic reactions) ên xaneyê ve tê rêvebirin.[12]

Hîdrolîza ATP-yê bo ADP + Pi , karlêkek wizederkiriner e û enerjiya tê berdan di xaneyê de ji bo rêvebirina karlêkên wizemij ên wekî girjbûna masûlkeyan, guhaztina madeyan û hwd tê bikaranîn.[12]

Xane biberdewamî, bênavber ATP bi kar tîne, loma divê li dewsa ATP-yên hatine xerckirin, yên nû werin dabînkirin. Xane dikare ji ADP-yê ATP berhem bike. Ji gelek karlêkan, fosfata neendamî(Pi) an jî koma fosfatî yên ji molekulan hatine qetîn, bi molekula ADP-yê ve tên girêdan û ATP peyda dibe.

Di xaneyên mirov de ATP ji enerjiya xanehenaseyê (bi înglîzî: cellular respiration) tê çêkirin. Bendên kîmyayî yên xurekan, bi pêvajoya henaseya xaneyê tên şêkestin û bi enerjiya van bendan, komafosfatek li ADP-yê tê zêdekirin û ADP diguhere bo ATP . Ango enerjiya kîmyayî ya di navbera bendên kîmyayî yên xurekên wekî karbohîdrat, çewrî û hvd ji bo dubare bikaranîna ATP-yê tên bikaranîn. Gava ATP fosfatek diguhazîne molekulek din disa ADP peyda dibe bi vî awayê çerxa ATP/ ADP didome.[10][9]

Mekanîzmayên çêkirina ATP-yê

Tevahiya karlêkên kîmyayî yên xaneyê wekî metabolîzma tê navkirin. Di hinek karlêkan de berdena enerjiyê, di hinekan de jî mijîna enerjiyê rû dide. Di xaneyan de ATP di navbera karlêkên kîmyayî yên enerjî berdidin û karlêkên enerjî dimijin ve navbeynkarî dike. ATP ev karî bi guhaztina koma fosfatî pêk tîne. Koma fosfatî ya ji ATP-yê hatiye berdan, di karlêkek wizemij de bi molekulek ve girêdan ava dike, bi vî awayê ji bo wê molekulê enerjiya ji bo rêvebirina karlêka kîmyayî dabîn dike.[9]

Xane ji bo berhemkirina ATP-yê bi taybetî karbohîdrat, çewrî û proteînan bi kar tîne. Xaneyên mirov herî zêde glukozê bi henaseya xaneyê (xanehenase) têk dişkîne û ATP bidest dixe. Di xanehenaseyê de elektron ji awêteyên karlêkê tên dûrxistin, paşê enerjiya bi van elekronan ve girêdayî ji bo berhemkirina ATP-yê wize dabîn dike.[9]

Di xaneyê de enerjiya ji bo çêkirina ATP-yê, bi karlêkên wizederbiriner ên xanehenase û fotosentezê tê dabînkirin. Bi molekulek endamî ve girêdana fosfata neendamî (Pi) wekî fosforîkirin (fosforîlasyon) tê navkirin.[14]

ATP bi fosforîkirina ADP-yê çê dibe. Di xaneyên navikrasteqînan de, wekî mînak, di xaneyên riwek û ajalan de ATP di mîtokonrî û kloroplast de tê berhemkirin. Di bakteriyan de ATP li ser rûyê navî yê parzûna xaneyê de tê berhemkirin.[15]

Gava di mîtokondiriyê de ATP berhem dibe, ji mîtokondriyê belavê nav xaneyê dibe û li kîjan beşa xaneyê de pê divî pê hebe, ji bo karên xaneyê tên bikaranîn.[1]

Di xaneyên zîndeweran de fosforîkirina ATP-yê bi sê rêyan pêk tê.

1. Fosforîlasyona di asta substradê

Bi henaseya xaneyê bi fosforîlasyona di asta substradê (bi înglîzî:substrate level phosphorylation) de hinek ATP tê çêkirin. Wekî mînak, di qonaxa glîkolîz de di sîtoplazmayê de, di qonaxa çerxa Krebs de di mîtokondrî de ADP tê fosforîkirin û ATP peyda dibe.

2. Fosforîlasyona oksîdatîv

Ev cora fosforîlasyonê jî di dema henaseya xaneyê de rû dide. Xaneyên mirov herî zêde bi vê rêbazê ATP bi dest dixin. Fosforîlasona oksîdatîv (bi înglîzî:oxidative phosphorylation) di xaneyên navikrasteqînan de di mîtokondriyê de rû dide. Di fosforîlasyona oksîdadiv de zincîra guhaztina elektron (bi înglîzî:electron transport chain) tê bikaranîn.

3. Fotofosforîlasyon

Riwek, hin bakterî û hin corên arkea bakteriyan tîrojên rojê ji bo çêkirina ATP bi kar tînin. Ango bi enerjiya ronahiyê fosfatek bi ADP-yê ve girê didin. Ev fosforîkirina dema fotosentezê wekî fotofosforîlasyon (bi înglîzî: photophosphorylation) tê navkirin. Bi rêbaza fotofosforîlasyonê, enerjiya ronahiyê tê guhaztin bo enerjiya bendên kîmyayî. ATP-yên bi fotofosforîlasyonê hatine çêkirin dîsa di qonaxa “çerxa Calvin” a fotosentezê de ji bo çêkirina glukoz tên bikaranîn.[15]

Di xaneyê de bikaranîna ATP-yê

ATP bi karlêka hîdrolîzê tê hilweşandin. Bi gelemperî di hîdrolîza ATP-yê de fosfata kotahî ji ATP-yê tê qetandin. Enerjiya ji bendê fosfatê tê berdan jî ji bo zîndeçalakiyên xaneyê tê bikaranîn.

Mînakên bo hinek zîndeçalakiyên xaneyê ko enerjiya ATP bi kar tînin;[15][16]

1. Di xaneyê de ji bo çêkirina molekulên aloz ên wekî karbohîdrat, proteîn parzûna xaneyê û hwd.

2. Di xaneyên masûlkeyê de ji bo girjbûn û xavbûnê masûlkeyan.

3. Dabînkirina ragîhandinê di navbera molekulên nav xaneyê de

4. Di demarexaneyan de ji bo guhaztina demareragihandinan.

5. Di parzûna xaneyê de ji bo alûgorkirina madeyan.

6. Di duhendebûna ADN û çêkirina ARN-yê de

7. Ji bo çalakkirina enziman

8. Di dabeşbûna xaneyê de ji bo cihguhertina kromozoman

9. Ji bo parastina germahiya laş, hinek ji enerjiya ATP-yê diguhere bo enerjiya tînê û laş germ dike.

Girêdana derve

Ferhenga Biyolojiyê [3]


Çavkanî

  1. Jump up to:a b c Jones, M., Fosbery, R., Gregory, J., & Taylor, D. (2014). Cambridge International AS and A Level Biology Coursebook with CD-ROM (4th ed.). Cambridge, MA: Cambridge University Press
  2. ^ Britannica, The Editors of Encyclopaedia. "adenosine triphosphate". Encyclopedia Britannica, 1 Feb. 2024, [1]<. Accessed 15 February 2024.
  3. Jump up to:a b Schraer D.W, Stoltze H.J,(1995). Biology (6th ed.). USA: prentice Hall, ISBN 0-13-806630-2.
  4. ^ Rittner, Don, and Timothy Lee McCabe. Encyclopedia Of Biology. Facts On File, 2004.
  5. Jump up to:a b Guyton, A. and Hall, J., 2011.Guyton And Hall Textbook Of Medical Physiology. Philadelphia: Saunders Elsevier.
  6. ^ Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,
  7. ^ Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
  8. Jump up to:a b c Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.
  9. Jump up to:a b c d Starr, C., & McMillan, B. (2010). Human Biology (8th ed.). Pacific Grove, CA: Brooks/Cole Publishing Company.
  10. Jump up to:a b Ireland, K. A. (2010). Visualizing Human Biology (3rd ed.). Hoboken, NJ: John Wiley & Sons.
  11. ^ Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
  12. Jump up to:a b c Losos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
  13. ^ Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  14. ^ Britannica, The Editors of Encyclopaedia. "phosphorylation". Encyclopedia Britannica, 20 Jul. 2017, [2] Accessed 15 February 2024.
  15. Jump up to:a b c Berk, A., Kaiser, C. A., Lodish, H., Amon, A., Ploegh, H., Bretscher, A., & Krieger, M. (2005). Molecular Cell Biology (5th ed.). CA.
  16. ^ Mader, S., & Windelspecht, M. (2017). Human Biology (15th ed.). New York, NY: McGraw-Hill Education.