Celadet Alî Bedîrxan

Me zanî ko xweseriya me, di zimanê me de ye û em bi tenê bi hînbûna xwendin û nivîsandina zimanê xwe û parastina wî, di civata miletan de, wek miletekî xweser dikarin bijîn û payedar bin.
Celadet Alî Bedîrxan (1893-1951)
Showing posts with label endam. Show all posts
Showing posts with label endam. Show all posts

2024/06/12

Zincîra Guhaztina Elektronan


Zincîra guhaztina elektronan
 an jî sîstema guhaztina elektronan (bi înglîzî: electron transport chain-electron transport system), zincîra molekulên ko ji bo çêkirina ATP-yê tevlê rêzekarlêkên oksandin û kêmkirinê (redoks) dibin.[1]

Hin caran li dewsa “zincîra guhaztina elektronan”, peyva “zincîra henaseyê (bi înglîzî: respiratory chain) tê navkirin.[2]

Bahenaseya xaneyî (bi îngilîzî: aerobic cellular respiration) ji sê beşên serekî pêk tê: Glîkolîz, çerxa Krebs û fosforîlasyona oksîdatîv.

Di glîkolîzê de glukoz tê hilweşandin bo 2 molkulên pîruvatê û ji glukozê 2 NADH û 2 ATP tê berdan. Her piruvatek bi oksandinê diguhere bo asetîl CoA, CO2 û NADH jîn tê berdan. Paşê asetîl CoA di çerxa Krebs de tê bikaranîn. Di çerxa Krebs de ji bo her dorê, ji asetîl CoA-yê 2 CO2, 3NADH, 1 FADH2 û 1 ATP peyda dibe. Di qonaxa fosforîlasyona oksîdatîv de NADH û FADH2 yên di gavên berê de hatine berdan di çêkirina ATP de tên bikaranîn.

Fosforîlasyona oksîdativ ji du qonaxan pêk tê: zincîra guhaztina elektronan (bi îngilîzî:electron transport chain (ETC)) û kemîozmoz (bi înglîzî: chemiosmosis).

Di xaneyên navikrasteqîn de zincîra guhaztina elektronan (ZGE) û enzîma çêkerê (diristker) ATP-yê di nav parzûna navî ya mîtokondriyê de bicihbûnî ne. Parzûna navî ya mîtokondriyê locdar e û wekî krîsta tê navkirin. Di xaneyên navikseretayî de zincîra guhaztina elektronan li ser navpoşê parzûna xaneyê de cih digirin.[3]

NADH û FADH2 ji aliyê zincîra guhaztina elektronan ve tên oksandin, elektronên ji NADH û FADH2-yê bi navbeynkariya zincîrê tê guhaztin bo molekula oksîjenê.[4]

Piraniya pêkhateyên zincîra guhaztina elektronan proteîn in. Proteînên zincîrê bi şeweyê kompleksên fireproteînî (bi înglîzî: multiprotein complex) ne û ji I heta IV-a tên navkirin. Komen prostetî bi proteînan ve bi awayekî zexm girêdayî ne. Komên prostatî (bi înglîzî: prosthetic groups) pêkhateyên neproteînî ne û ji bo çalakiya katalîzekirinê ya proteînê (enzîm) girîng in.[5]

Gava pêkhateyek zincîrê ji cîranê xwe elektron werdigire, tê kêmkirin (bi îngilîzî: reduced) û gava elektronên xwe dide molekulek din jî tê oksandin (bi îngilîzî: oxidized). Her cara ko di zincîra guhaztina elektronan de elektron tên guhaztin, wergirê elektronronan bi girtin û berdana elektronan ji asta kêmkirinê diguhere bo asta oksandinê.[5]

Di zîncîra guhaztina elektronan de, NADH û FADH2 yên tevlê karlêkên oksan û kêmkirinê (redoks) dibin, elektronên (hîdrojenên) xwe ji hilweşandina glukozê (an jî xurekên din) bi dest dixin.[1]

Bi alîkariya enzîmên hîdrojenaz ve, ji NADH û FADH2 hîdrojen tên qetandin, elektronên hîdrojenan ji aliyê molekulek endamê zincîra guhaztina elktronan ve tên wergirtin. Gava ji hîdrojenê elektron tê berdan hîdrojen êdî tenê ji protonek pêk tê, loma ji vê gavê şûnve êdî ji bo hîdrojena oksandî (H+) peyva proton tê bikaranîn.

Di zincîrê de li gor meyla wergirtin an jî berdana elektronan, her molekul di rêzek taybet de cih digire. Meyla wergirtina elektronan, ji molekula yekem a zincîrê ber bi molekula dawî, her ko diçe zêdetir dibe. Di zîncîra guhaztina elektronan de, elektron ji molekulek bi meyla wergirtina kêm, ber bi molekulek bi meyla wergirtina zêdetir tên guhaztin.[1]

Di her guhaztinek de elektron hinek enerjî berdide. Enerjiya ji aliyê elektronan ve hatiye berdan ji bo pompekirina protonan (H+) ji parzûna navî, ber bi qada navbera parzûnan ve tê xerckirin.[6]

Di fosforîlasyona oksîdatîv de guhaztina elektron bi sê awayê rû dide.[7]

1. Rasterast guhaztina elektronan. Wekî mînak, di kêmkirina Fe3+ bo Fe2+ de Fe3+ rasterast elektronek werdigire.

2. Guhaztina wekî atoma hîdrojenê. Hîdrojen ji protonek (H+) û elektronek (e- ) pêk tê.

3. Guhaztina bi şeweyê iyona hîdrîdê (:H-). Hîdrîd du elektron û protonek lixwe digire.

Rêz û Pêkhateya kompleksên zincîrê

Di zîncîra guhaztina elektronan de du rêçeyên guhaztinê hene. Rêçeya yekem bi kompleksên I-III-IV rû dide û NADH wekî substrat tê bikaranîn. Di rêçeya duyem de substrat suksînad e û rêçe ji kompleksên II-III-IV pêk tê


Rêza asayî ya proteînên ZGE-yê Kompleksa I, kompleksa II, koenzîm Q, kompleksa III, sîtokrom C û kompleksa IV e.

Di zîncîra guhaztina elektronan de du rêçeyên guhaztinê hene. Rêçeya yekem bi kompleksên I-III-IV rû dide û NADH wekî substrat tê bikaranîn. Di rêçeya duyem de substrat suksînad e û rêçe ji kompleksên II-III-IV pêk tê[8]

Kompleksa I

Molekula yekem a zîncîra guhaztina elektronan Kompleksa I e. Kompleksa I wekî NADH dehîdrojenaz (bi înglîzî: NADH dehydrogenase) an jî ubîkunon oksîdoreduktaz (bi înglîzî: ubiquinone oxidoreductase) jî tê navkirin. Kompleksa I enzîmek gir e, flavoproteîn jî tê de ji 42 cor zincîrên firepeptîd û herî kêm guşiya ji 6 hesin-sulfur (Fe-S) pêk tê. Kompleksa I bi şêweyê tîpa L ye, milekî L-yê di nav parzûnê de ye, milê din ber bi matrîksê ve dirêj dibe (di xaneyên navikseretayî de ber bi sîtoplazmayê ve dirêj dibe). NADH dehîdrojenaz ji NADH-ê 2 hîdrojen diqetîne.[7]

NADH ên ko ji karlêkên glîkolîz, oksandina pîruvatê û ji çerxa Krebs hatine berdan, li vir tên oksandin. Ji NADH-ê 2 elektron tê guhaztin bo flavîn mononukleotîdê (FMN). Paşê ji vir elektron tên guhaztin bo beşa Fe-S. Dawiya dawî elektron tên guhaztin bo ubîkunonê (koenzîm Q). Bi van karlêkên oksandin û kêmkirinê bi navbeynkariya enerjiya ji elektronan, 4 iyonên hîdrojenê (H+) ji matrîksa mîtokondriyê derbasî valahiya navbera parzûnan dibin û tevlê avakirina gradyana protonan dibin[9]

Kompleksa II

Kompleksa II an jî bi navê xwe yê din suksînat dehîdrojenaz (bi înglîzî: succinate dehydrogenase) ji suksînatê elektron werdigire. Suksînat dema çerxa Krebs de peyda dibe. Gava suksînat tê oksandin bo fumeratê, 2 elektron di kompleksa II de ji aliyê FAD-ve tên wergirtin. FADH2 elektronan diguhazîne guşeya hesin-sulfurê (Fe-S), ji wir jî elektron derbasî ubîkunon (bi înglîzî: ubiquinone) dibin.Ubîkunon molekulek piçûk a dijav (bi îngilîzî: hydrophobic) û neproteînî yê zincîra guhezerê elektronan e. Herwisa ji bo vê molekulê navê koenzîm Q jî tê bikaranîn.(--6) Koenzîm Q elektronan diguhazîne kompleksa III.

Kompleksa III

Kompleksa III, an jî kompleksa sitokrom bc1 (cytochrome

bc1 complex), ji sîtokroma b, proteînên sîtokroma c û du guşeyên Fe-S pêk tê.

Piraniya guhêzerên elektronan ên di navbera ubîkunon û oksîjenê proteîn in û wekî sîtokrom (bi înglîzî: cytochromes) tên navkirin. Di zincîra guhaztina elektronan de gelek corên sîtokroman hene. Di zincîrê de sîtokoroma dawî, sîtokrom a3 ye. Elektron ji vir tên guhaztin bo oksîjenê.[5]

Sîtokrom komek proteînin ko koma hemê lixwe digirin. Sîtokrom di henaseya xaneyî û fotosentezê de di zincîra guhaztina eletronan de her carê elektonek diguhazîne.[4]

Koma prostatî ya sîtokroman wekî koma hem (bi înglîzî: heme group) tê navkirin û atomek hesinê lixwe digire. Wergirtin û berdana elektronan bi navbeynkariya atoma hesinê rû dide. Bi wergirtina elektronê de koma hem ji rewşa Fe3+ diguhere bo Fe2+, bi berdana elktronê bargeya koma hemê ji Fe2+ diguhere bo Fe3+ . Sîtokrom C dikare her carê tenê elektronek werbigire, her wisa her carê elektronek diguhazîne kompleksa IV. Li kompleksa III de 4 proton tên şandin bo valahiya navbera parzûnan.[5]

Kompleksa IV

Kompleksa IV, wekî sîtokrom c oksîdaz jî tê navkirin. Di vê kompleksê de sîtokrom c tê oksandin û elektron tên guhaztin bo oksîjenê. Oksîjen wergira dawîn e ji bo zincîra guhastina elektronan. Sîtokrom c oksîdaz ji 7 binebeşan pêk tê.[4] Li gel komên hem û baxir (mis), di sîtokrom c oksîdaz de proteînên a û proteînên a3 jî ji bo guhaztina elektronan û girêdana elektroan bi oksîjenê ve kar dikin. Enerjiya ji guhaztina elektronan tê berdan, ji bo guhaztina 4 protonan ber bi valahiya navbera parzûnan ve tê bikaranîn.

ATP sentaz

ATP sentaz an jî bi navek din kompleksa V, xestiya protonên di valahiya navbera parzûnan ji bo çêkirina ATP-yê bi kar tîne. Enzîma ATP sentaz ji du beşên serekî; beşên FO û F1 pêk tê. Ev herdu beş jî ji gelek binebeşan pêk te. Beşa FO dijav e (bi înglîzî: hydrophobic) û di nav parzûna navî de bicihbûyî ye. Ev beş ji bo derbasbûna protonan wekî cogek kar dike. Beşa FO ji ber herika protonan, bi şeweyê sîstema zivirîna (rotasyon) motoran dizivire. Di heman demê de ADP tê fosforîkirin û bi rêçeya fosforîlasyona oksîdatîv, ATP tê çêkirin.

Di xaneyên navikrasteqîn (êkaryotî) de, NADH-yên bi glîkolîzê hatine çêkirin, ji sîtoplazmayê bi guhaztina çalak tên şandin bo mîtokondriyê ko cota elektronên xwe bidin zincîra guhaztina elektronan. Ji ber ko ji bo guhaztina çalak hinek enerjî tê xerckirin, ji bo herdu NADH-yên ji glîkolîzê çêbûyî, enerjiya ji NADH-yek tê bidestxistin ne 3 lê safî 2 ATP ye. Ji ber ko NADH û FADH2 elektronên xwe di cihên cuda yên zincîra guhaztina elektrona de berdidin, enerjiya ji oksandina wan tê bidestxistin ne heman e. Elektronên ji NADH-ê li gor yên ji FADH2-yê, bi zîncîrek dirêjtir tên guhaztin. Loma ji elektronên NADH-ê, hê pirtir ATP tê bidestxistin.[1]

Çavkanî

  1. Jump up to:a b c d Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  2. ^ Starr, C., & McMillan, B. (2010). Human Biology (8th ed.). Pacific Grove, CA: Brooks/Cole Publishing Company.
  3. ^ Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
  4. Jump up to:a b c Biochemistry. : Rawn, J.D. (1989) Biochemistry. Burlington, NC: Neil Patterson Publishers, Carolina Biological Supply Company. ISBN- 0-89278-400-8
  5. Jump up to:a b c d Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
  6. ^ Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.
  7. Jump up to:a b David L. NelsonMichael M. Cox(2013). Lehninger Principles of Biochemistry. : W. H. FREEMAN AND COMPANY • New York ISBN-13: 978-1-4641-0962-1
  8. ^ Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019 Jul;44(1):3-15. toi: 10.3892/ijmm.2019.4188. Epub 2019 May 8. PMID: 31115493; PMCID: PMC6559295.
  9. ^ Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. [Updated 2023 Sep 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: [1]

Girêdanên derve

Ferhenga Biyolojiyê [2]

2022/11/25

Asîda deoksîrîbonukleyî (ADN)



    Asîda deoksîrîbonukleyî, an jî bi kurtenav ADN (bi înglîzî: deoxyribonucleic acid(DNA)) molekulek aloz e, di nav xaneyên zîndeweran de embarkarina zanyariyên bomaweyî dike. Hemû xaneyên navikseretayî (prokaryotî) û navikrasteqîn(êkaryotî) ADN lixwe digirin.Herwisa gellek corên vîrusan jî ADNyê lixwe digirin, ji van vîrusan re tê gotin vîrusên ADNyî
ADN ji bo du erkê serekî kar dike
1.ADN çavkaniya zanyariyê ye ji bo diristkirina proteînên xaneyê û zindewerê .
2. Zanyariyên bomaweyî bi navbeynkariya ADNyê ji bavan derbasî xaneya nû an jî weçeyê (bi înglîzî: offspring) dibe.
    Molekula sereke ya zanyariyên bomaweyî ADN ye, pêwendiya ADNyê bi gen û kromozoman heye. Gen yekeya bingehîna zanyariyên bomaweyî ye. Gen ji koma nukleotîdên li ser ADNyê pêk tê. Cihê her genek li ser kromozomê de taybet e. Ev cihên genan wekî lokus bi nav dibe. ADN xwe li ser proteînên hîstonê dipêçîne, bi vî awayî kurttir dibe, ev pêkhate wekî kromotîn tê navkirin. Dema dabeşbûna xaneyê dest pê dike, kromotîn xwe li dor xwe dipêçînîn, hê kurtir û stûrtir dibin. Di vê qonaxê de kromatîn êdî wekî kromozom tên navkirin. Kromozom ji ADN û proteînên hîstonê pêk tê. Ango di xaneyek mirov de 46 kromozom an jî 46 molekulên ADNyê heye.
--Dîroka Keşfa Asîda Deoksîrîbonukleyî --
    Mirovahî cara pêşîn di sala 1869ê de bi xebatên biyokîmyagerê Swisrî Friedrich Miescher(1844-1895) ji hebûna asîdên nûkleyî (ADN û ARN) agahdar bû. Di salên pêşî de asîdên nukleyî wekî “nukleîn” hatin navkirin. Di 1874ê de Miescher, pêkhateya ko em îro wê wekî ADN dizanin, wekî asîda nukleyî da nasîn.
    Phoebus Levene (1863-1940) zanyarêk Emerîkî bû, di sala 1905e de li Enstîtuya Rockefellerê de dest bi xebata li ser pêkhatina asîdên nukleyî kir. Levene bi xebatên xwe yên navbera 1909-1929an de cara pêşîn yekeya ADNyê wekî nukleotîd bi nav kir. Herwisa yekeyên nukleotîdê jî wêkî komeleya fosfatî, şekir û baza nîtrojenî diyar kir. Li gel wan xebatên wî, Levene şekirê rîboz û ê deoksîrîbozê jî keşf kir. Levene der barê pekhatina ADNyê de hîpoteza “tetranukleotid”ê pêşvazî kir. Li gor vê hîpotezê, ADN ji Adenîn, Guanîn, Tîmîn û Sîtozînê pêk dihat û di ADNyê de hejmara hemû bazên nîtrojenî wekhev bû.(A=G=T=C) Lê mixabin Levene erkê ADNyê bi awayekî rast fam nekirî bû. Li gor dîtina wî, ADN molekulek hêsan bû, loma nedibû ko zanyariyên bomaweyî li ser vê molekulê ba.
    Hîpoteza Levene bi du ezmûnan hat pûçkirin. Ezmûna yekemîn di sala 1928an de ji aliyê Frederick Griffith(1879–1941), a duyemîn ko berdewamiya a yekemînê ye, di sala 1944ê de ji aliyê Oswald Avery û karhevalên wî ve hat kirin. Di van herdu ezmûnan da êdî bi awayekî bêşik derket holê ko zanyariyên bomaweyî li ser molekula ADNyê ye.
    Zanyarek Emerîkî, Erwin Chargaf (1905-2002) di sala 1950 de pêşniyar kir ko di molekula ADNyê de hêjmara Adenîn û Tîmîn heman wekhev e. Her wisa hejmara Guanîn û a Sîtozîne jî wekhev e. Chargaf di xebata xwe de eşkere kir ko, rêjeya A-T ya bi G-C ji bo her corêk zîndewer taybet e. Ev her du xebatên Chargaf wekî Zagonên Chargaf (bi înglîzî: Chargaff’s rules) tên navkirin.
Di sala 1952 de Alfred Hershey û Martha Chase bi ezmûnek piştrast kirin ko di vîrûsan de molekula bo zanyariyên bomaweyî ne proteîn lê ADN ye.
    Di sala 1952yê de kîmyagera Britanî, Rosalind Franklin (1920 – 1958) bi rêbaza şikestina tirojên-X (bi înglîzî:X-ray diffraction )wêneyê ADNyê bi dest xist
    sala 1953yê de şeweyê ADNyê ji aliyê du zanyarên zanîngeha Kembrîçê(Cambridge University) ve hat aşkerekirin. Herdu zanyar, Francis Crick û James Watson şeweyê ADNyê wekî “lûlpêçê hevcot” diyar kirin. Herwisa bi xebatên xwe, pêvajoya duhendîbûna ADNyê jî aşkere kirin.
--Pêkhateya ADNyê--
    ADN ji karbon, oksîjen, hîdrojen, nîtrojen û fosforê pêk tê. Du zincîrê ADNyê heye. Zincîrên ADNyê bi arasteya dij hev ango antîparalel li ba hev dirêj dibin.Her zincîrek ADNyê ji milyonan nukleotîdan pêk tê. Ango nukleotîd yekeyên ADNyê ne.
Nukleotîd ji sê beşan pêk tê; koma fosfatî, şekirê pênckarbonî û baza nîtrojenî. Ne tenê ADN, lê ARN û molekulên Wekî ATP, ADP jî ji nukleotîdan pêk tên.
    Nukleotîdên zincîrên ADNyê bi bendên fosfodîesterê bi hev re girêdayî ne. Di navbera şekirê nukleotîdek û koma fosfata nukleotîda din de, bi bendên kovalendî girêdan tê avakirin. Karbona sêyem a şekirê nukleodîdek bi fosfata nukleotîda din ve bi bendê fosfodîester, girêdana kovalendî ava dike. Bi vî awayî bi girêdana şekir-fosfat-şekir-fosfat... zincrek dirêj a nukleotîdan pêk tê, ji vê pêkhateyê re tê gotin peykerê şekir-fosfat (bi înglîzî: sugar-phosphate backbone ). Li aliyê hundirin ê peykerê şekir - fosfat a herdu zincirên ADNyê de, bazên nîtrojenî yên zincîrek bi bazên zincîra din ve bi bendên qels ên hîdrojenî girêdayî ne.
    Dirêjiya zincîrên ADNyê çiqas dibe bila bibe, dîsa jî ji herdu serên zîncîrê, a yek wekî serê 5, a din jî wekî serê 3 tê navkirin. Di serê 5 de karbona pêncem a şekirê nukleotîda kotahiyê bi koma fosfatî ve girêdayî ye. Ango li serê 5 de beşa koma fosfatî ya nukleotîdê serbest e. Di serê din ê zincîra ADNyê de, koma hîdroksîl (OH) bi karbona sêyem a şekirê nukleotîdê ve girêdayî ye, ango li vî serî de karbona sêyem a şekirê serbest e. Gava nukleotîdek nû li zincîrê tê zêdekirin, koma fosfatî ya nukleotîda nû bi serê 3 yê zîncîrê ve tê girêdan. Ji ber ko herdu zincîrên ADNyê li gel hev bi şeweyê antîparalel dirêj dibin, li aliyê serê 5ê zîncirêk, serê 3yê zîncîra din cih digire.
    Her nûkleotid ji molekula şekirê kêmoksîjenî , koma fosfat, û yek ji çar corên bazên nîtrojenî pêk tê. Ji nukleotîdên ADNyê re tê gotin nukleotîdên deoksîrîbonukleyî. Şekirê nukleotîdên ADNyê monosakkaridek pênckarbonî ye û wekî rîboz tê navkirin. Lê ji ber ko riboza nûkleotîdên ADNyê de oksîjenek kêm e, ev rîboz wekî rîboza kêmoksîjenî (deoksîrîboz) tê navkirin.
    Nukleotîdên ADNyê çar cor in; Adenîn, Tîmîn, Guanîn û Sîtozîn. Nukleotîd navê xwe ji cora baza nîtrojenî digirin. Wekî mînak, deoksîrîbonukleyî ya Adenîn, li gel koma fosfat û şekirê pênckarbonî, baza nîtrojenî ya bi navê Adenîn jî lixwe digire.
Di ADNya asayî de bazên Adenîn hertim bi Tîmîn ve, bazên Guanîn jî hertim bi Sîtozînê ve bi bendên hîdrojenî girêdan ava dikin. Di navbera baza Adenîn û Tîmînê de du bendên hîdrojenî, navbera Guanîn û Sîtozînê de sê bendên hîdrojenî çêdibe.
Ji van nukleotîdan, Adenîn û Guanîn wekî purîn(bi înglîzî: purines), Sîtozîn û Tîmîn jî wekî pîrîmîdîn (bi înglîzî: pyrimidine) tên navkirin. Lê ji ber ko hin bazên nîtrojenî (purîn) cot xelekî ne, hinekî jî yek xelekî ne(pîrîmîdîn), hertim purîn bi prîmîdan re hevbeşî dikin. Bi vî awayî firehiya navbera herdu şerîdan hertim sabit dimîne.
    Li gor zagona Chargaf, di molekulek ADNyê de hejmara nukleotîdên Adenînê bi qasî nukleotîdên Tîmînê ye(A=T). Herwisa hejmara nukleoîdên Guanînê û hejmara Sîtozînê jî heman in(G=C). Heke rêjeya corek baza ADNyê diyar be, mirov dikare rêjeya bazên din ên wê ADNyê jî pê derxe.
Wekî mînak, heke molekulek ADNyê %20 ji bazên Adenînê pêk hatibe, divê di heman molekulê de rêjeya bazên Tîmîn jî % 20 be. Ango %40ê ADNyê ji Adenîn û Tîmîn pêk tê. Vê gavê divê rêjeya Guanîn + Sîtozîn jî %60 be. Ji ber ko hejmara Guanîn û Sîtozînê yeksan e, divê di molekula ADNyê de rêjeya Guanîn %30 û rêjeya Sîtozîn jî %30 be.
    Di molekula ADNyê de herdu zincîr li dora hev bi awayekî lûleyî hatine pêçandin. Ji ber vê pêçînê, şeweyê ADN wekî lûlpêçê hevcot (bi înglîzî: double helix) tê navkirin.
Di xaneyên navikrasteqînan de ADN proteînên hîston dipêçînê, pêkhateya ji ADN û hîston peyda dibe wekî kromatîn tê navkirin. Di pêvajoya dabeşbûna xaneyê de piştî qonaxa înterfazê, kromatînên zirav û dirêj xwe li dor xwe ba didin û xwe gilok dikin, bi vî awayî kromatîn kin û stûr dibin. Ev şiklê kromatîn wekî kromozom tê navkirin. Dibe ko kromozomek bi deh hezaran gen lixwe bigire.Yekeya zanyariyên bomaweyî wekî gen tê navkirin. Gen ji beşek ADNyê pêk tê. Pirraniya genan, zanyariyên ji bo berhemkirina proteînan lixwe digirin. Hinek ji genan jî zanyariyên bo diristkirina ARNyan lixwe digirin. ADN bi vekirina(çalakkirin) genan an jî bi girtina(rawestandina çalakiyê) genan, hemû çalakiyên xaneyê kontrol dike.
    Di xaneyên navikrasteqînan de molekulên ADNyê di bi şêweyê xêzî (linear) di navikê de cih digirin. ADN bi proteîna hîston ve girêdayî ye û wekî kromozom tê navkirin. Ango kromozom ji ADN û proteîna hîstonpêk tê. Di xaneyên navikrasteqînan de kromozom di nav navika xaneyê de cih digirin.
    ADNya xaneyên navikseretayiyan (bakterî, arkea), ya mîtokondriyan, ya kloroplastan û ya hin vîrusan bi şeweyî xelekî (helqeyî) ye.
ADNya nav navika xaneyê, hin caran wekî ADNya navikî (bi înglîzî: nuclear DNA) jî tê navkirin. ADNya navikî li gor ADNya mîtokonriyê gellek aloztir e.
--Duhendebûna ADN--
Di destpêka jiyanê de laşê mirov ji yek xaneyek, ango ji zîgotê pêk tê. Zîgot, bi dabeşbûnê zêde dibe û hejmara xaneyên mirov digihîje mîlyaran. Ne tenê hejmara xaneyan lê erk û şiklê xaneyan jî diguhere. Şane û organ li gor erkê xwe dibin çerm, xwîn, gurçik, hestî hwd. Di laşê mirov de li gor erk, şikl û şemal, ji 200î zêdetir cor xane heye. Lê di laşê mirovek de, rêz, hejmar û mêjera nukleotîdên ADNyê di hemû xaneyên wî de wekhev in. Kromozomên hemû xaneyan kopîyên hev in. Ev kopîyên kromozoman bi kopîbûna ADNyê (bi înglîzî: DNA replication), ango bi duhendebûna ADNyê çêdibin. ADN di qonaxa interfazê ya dabeşbûna xaneyê de duhende dibe.
Gavên Duhendebûnê
-Du zincîrên ADNyê tewawkerên hev in û herdu zincîr bi bendên hîdrojenî bi awayekî antîparalel bi hev re girêdayî ne. Ango zîncîrek ADNyê li gor zîncîra din serberjêr e. Ji bo duhendebûna ADNyê gava yekem hilweşandina bendên hîdrojenî ye.
Bendên hîdrojenî di navbera bazên nukleotîdên hevbeş de cih digirin. Bendên hîdrojenî, bi navbeynkariya enzîmên topoîzomeraz û ADN helîkaz tên hilweşandin. Dema bendên hîdrojenî hildiweşin, herdu zincîrên ADNye di wê beşê de ji hev dûr dikevin û du heb duriyanê duhendebûn peyda dibin. Duriyanê duhendebûn dişibe tîpa Y. Navbera herdu duriyanê duhendebûnan de peqikek(bi înglîzî: bubble) çêdibe. Peqik wekî beşa destpêka dûhendebûnê (origin of replication) kar dike. Duhendebûn li herdu duruyanê duhendebûnê de dest pê dike û ber bi herdu aliyên ADNyê ve didome.
- Proteînên li ser zincîrên bineretî (SSB-single strand binding protein) zincîran vekirî dihêle, bernade ko zincîr cardin li hev bipêçin.
-Ev herdu zincîrên vekirî ji bo çêkirina zîncîrên nû, wekî zincîrên bineretî(qalib) kar dikin. Hilweşandina bendên hîdrojenê di gellek beşên ADNyê de di heman demê de dest pê dike. Bi vî awayî duhendebûn di demek kurt de bi dawî dibe.
-Ji ber ko herdu zincîrên ADNyê bi awayekî antîparalel bi hev re girêdayine, zincîra yek bi serê 3’-5’ be a din bi serê 5’-3’ li hemberî wê dirêj dibe.
-Nukleotîdek nû bi serê 3’ (ango bi karbona sêyemîn) bi komeleya fosfatî ya nûkleotîda pêş ve tê girêdan. Di zîncîra bineretî ya bi serê 3’-5’ de karê duhendebûnê ber bi duriyanê duhendebûnê bi rê ve diçe. Zincîra nû ya ko li hember vê zincîrê tê çêkirin, wekî zincîra bênavber (bi înglîzî: leading strand) tê navkirin.
Ji bo destpêkirina girêdana nûkleotîdan, pêşî divê ARN destpêk(bi înglîzî: RNA primer) li ser zincîra bineratî ve tê girêdan. Paşê enzîma bi navê “ ADN polîmeraz”, dest bi xebatê dike. ADN polîmeraz li hember zincîra bineretî ya 3’-5’, zincîra bênavber a 5’-3’çê dike. ADN lîgaz navbera nukleotîden zincîra bênavber da bi bendê fosfodîester, girêdan ava dike, bi vî awayî ji zîncîrek bineretî, zincîrek nû tê çêkirin.
-Zincîra bineratiya din jî bi serê 5’-3’ ye. Li hember vê zincîra bineretî divê zincîra nû ya tewawker, bi serê 3’-5’ be. Lê enzîma polîmeraz di duriyanê duhenendebûnê de tenê bi arasteya serê 5’ ber bi serê 3’ ve dikare zincîra nû ava bike. Loma di vê zincîrê de karê duhendebûnê, bi arasteyê dûr li duriyanê duhendebûnê ve bi rê ve diçe. Bi alîkariya ARN polîmeraz li ser hin beşên zincîra bineretî de pirtkên ARN destpêk tê çêkirin. Bi vî awayî girêdana nukleotîdan ji aliyê serê 3’ dest pê dike û bi arasteyê dûr ji duriyanê duhendebûne ve bi rê ve diçe. Di vê demê de perçeyên piçûk ên ji 100 heta 2000 nukleotîdan peyda dibe ji van perçeyan re tê gotin pirtikên Okazakî. Zincîra nû jî wekî zincîra binavber (bi înglîzî: lagging strand) tê navkirin. Paşê corek din a ADN polîmeraz, ARN destpêkan hildiweşîne û li şûna wan, ADN çêdike. Bi vî awaye pirtikên Okazakî digêhêjin hev û zîncîra binavber dibe yek perçe. ADN lîgaz navbera pirtikên ADN’ê de bendên fosfodîester ava dike û duhendebûn bi dawî dibe.
--Duhendebûna nîvparezî--
    Pêkhateya ADNyê di sala 1953yan da hat aşkere kirin, lê zanyariyên rasteqîn ê der barê duhendebûna ADNyê, hata sala 1958an ne dîyar bû. Herdu zanyarên Emerîkî, Matthew Stanley Meselson û Franklin William Stahl di sala 1958an bi ezmûnekî, pêvajoya duhendebûna ADN diyar kirin. Ev ezmûn wekî ezmûna Meselson û Sthal (bi înglîzî: Meselson and Stahl experiment) tê navkirin.
    Meselson û Sthal ezmûnê li ser ADN ya bakteriya bi navê E.colî de saz kirin. Ji bo şopandina ADNyên nû,15N (Nîtrojena giran) bi kar anîn. Li siruştê nîtrojena asayî, ya 14N e. Hemû bazên nîtrojenî yên nukleotîdan di pêkhateya xwe da nîtrojena asayî, ango 14N lixwe digirin.
Di navika nîtrojena asayî de 7 proton û 7 nêtron hene. Nêtronek 15N-yê zêde ye, ango 7 proton û 8 nêtronê 15N-yê hene. Ango 14N û 15N îzotopê hev in. Ji ber ko nêtronekî wê zêdeye, 15N wekî nîtrojena giran tê navkirin. Taybetmendiya 15N-yê ev e ko, mîna 14N-yê bi hêsanî tevlê çêkirina bazên nûkleotîdan dibe. Zanyar jî ev taybetmendiya 15N-yê ji bo nîşankirina ADNyê bi kar anîn.
Di destpêka ezmûnê de zanyar îyonên amonyumê (15N H4)+ didin bakteriya E.colî û rê didin ko bakterî bi dabeşbûnê pir bibe(--22). Bakterî ji bo debaşbûnê ji dorhêla xwe nîtrojena di nav amonyuma giran digirin û ev nîtrojenê di çêkirina nukleotîd û proteînên nû de bi kar tînin. Bakterî di nav dorhêla 15N-yê de gellek nifşên nû çêdike, êdî ADNya hemû bakteriyan 15N lixwe digirin.
Xwêya bi navê Sezyum klorûr(CsCl) ji bo cudakirina ADN ya 15N ji ya 14N tên bi kar anîn.
Xestiya Sezyum klorûr û ya ADNyê wek hev in. Xestiya herduyan jî 1.710 g/cm3 e.
Xestiya ADNya giran 1.724 g/cm3, ya ADNya dureg (hîbrîd) jî 1.717 g/cm3 e.
    Zanyar ji bakteriyên 15N-yê hinek bakterî digrin û di nav dorhêla 14N-yê de diçînin. Bakterî di dorhêla 14N-yê de bi qasî 4 nifşan pir dibin.
Zanyar di her nifşê de ADNya hinek bakteriyan ji xaneya bakteriyan der dixin û dikin nav Sezyum klorûrê. Paşê, Sezyum klorûr, di nav lûlikên ezmûne de bi santrîfujê bi qasî 20-30 seat tê santrîfujkirin. Di vê demê de ADNyên di nav Sezyum klorûrê li gor giraniya xwe di lûlikên ezmûnê de rêz dibin. Zanyar giraniya ADN-ya her nifşê didin ber hev. ADN-ya herî giran li binê lûlikê, ya asayî (a sivik) li jorê lûlikê ya durreg jî di navbera herduyan de kom dibe.
Bi vê ezmûnê hat piştrastkirin ko ADN bi awayekî nîvparezî (bi înglîzî: semiconservative replication) duhende dibe. Piştî duhendebunê, molekula ADNya nû ji zîncîrek nû û zincîrek kevn (zincîra bineratî) pêk tê.
---ADN ya xaneyên navikseretayî(prokaryotî)--
Bakterî û arkea, zîndewrên navikseretayî ne.Di xaneyên navikseretayî de navik tune, loma kromozom di nav sîtoplazmayê de belavî ye. Bi gelemperî, tenê kromozomek bazineyî yên navikseretayiyan heye, lê hin bakterî kromozoma xêzî(linear) lixwe digirin. Hin corên bakteriyan jî ne yek lê du an jî zêdetir ADNya bazinî lixwe digirin. Ji ber ko ADN ya navikseretayiyan bi proteîn dorpêçî nîn e, kromozomên prokaryotiyan ji ne wek kromozomên navikrasteqînan (êkaryot) ê. Kromozoma navikseretayiyan bi şeweyî bazineyî (xelekî) ye û wekî kromozoma bazineyî (xelekî) an jî ADNyê navikseretayî tê bi nav kirin.
Her wekî hemû zindewerên din, ADNya bakteriyan jî 4 cor bazên nîtrojenî lixwe digirin. Nukleotîd li gor zagonên Chargaf rêz dibin. ADNya bakteriyan jî bi şeweyî lûlpêçêhevcot e.
Ji xeynî ADNya navendî, di xaneyên bakteriyan de hin perçeyên ADNyê jî heye. Ji van perçeyên bazineyî re tê gotin plazmîd (bi înglîzî: plasmid). Ne yek lê gellek plazmîd di xaneyên bakterî de cih digirin.
Di dema duhendebûnê de, di ADNya bakteriyan de tenê yek orjîn(destpêka duhendebûnê) peyda dibe, ev destpêka duhendebûne ji 100-200 nûkleotîdan pêk tê. Li vê bêşa duhendebûnê ya ADNyê de bendên qels ên hîdrojenî pir e. Piraniya bazên tewawker A=T ye. Loma duhendebûna ADNyê ji vir dest pê dike. Pirtikên Okazakî yên li ser zincîra ADNya navikseretiyan ji yên navikrasteqiyan girtir in (1000 - 2000 nukleotîd). Duhendebûna ADNyê jî ji ya navikrasteqiyan leztir rû dide.
*Ev xebat li ser wîkîpediyaya kurdî jî hat zêdekirin.