Celadet Alî Bedîrxan

Me zanî ko xweseriya me, di zimanê me de ye û em bi tenê bi hînbûna xwendin û nivîsandina zimanê xwe û parastina wî, di civata miletan de, wek miletekî xweser dikarin bijîn û payedar bin.
Celadet Alî Bedîrxan (1893-1951)
Showing posts with label enzîm. Show all posts
Showing posts with label enzîm. Show all posts

2024/04/28

Oksandina pîruvatê

 

Oksandina pîruvatê an jî dekarboksîlasyona pîruvatê (bi înglîzî: pyruvate oxidation-pyruvate decarboxylation), rêçeyek kîmyaya zindî ye ko ji bo çêbûna asetîl CoA, pîruvat tê oksandin (hilweşandin) bo koma asetîl û karbona dîoksîdê.

Di hebûna oksîjenê de pîruvatên ko di glîkolîzê de hatine çêkirin tên oksandin, bi vî awayê ji pîruvatê he pirtir enerjîya ATP tê bidestxisitin. Di xaneyên navikrasteqînan de karlêkên bo oksandina pîruvatê di hundirê mîtokondriyê de rû didin. Heman karlêk di xaneyên navikseretayî de di sîtoplazmayê de û li ser rûyê navî yê parzûna xaneyê de rû didin.[1]

Xane enerjiya pîruvatê bi du qonaxan bi dest dixe, di qonaxa yekem de pîruvat tê oksandin û pêkhateyek dukarbonî û karbona dîoksîd peyda dibe. Di heman demê de NAD+ jî tê kêmkirin bo NADH-ê.

Di qonaxa duyem de awêteya du karbonî bi karlêkên çerxa Krebs tê oksandin bo karbona dîoksîdê.

Pîruvatên bi rêçeya glîkolîzê çêbûne, nikarin rasterast tevlê qonaxa paşê ya bahenaseyê bibin, divê peşî ji pîruvatê molekulek karbona dioksîd were dûrxistin.[2]

Pîruvat bi guhaztina çalak ji sîtoplazmayê tê guhaztin bo mîtokondriyê.[3]

Di xaneyên navikrasteqîn de pîruvat di beşa matriks a mîtokondriyê de tê hilweşandin bo asetîl CoA.[4][5]

Ji ber ko çêbûna asetîl CoA, qonaxa glîkolîzê bi çerxa Krebs re girê dide, karlêka oksandina pîruvatê wekî karlêka guhaztinê (bi înglîzî: transition reaction) an jî karlêka navber (bi înglîzî: bridge reaction) jî tê navkirin.[5]


Gavên oksandina pîruvatê

Karlêka oksandina piruvatê ji aliyê enzîma pîruvat dehîdrogenaz ve (bi înglîzî: pyruvate dehydrogenase) tê hankirin. Pîruvat dehîdrogenaz kompleksek fireenzîm e (bi înglîzî: multienzyme complex) û ji 72 zincîrên polîpeptîd pêk tê.[6]

Kompleksa fireenzîm sê karlêkan han dike.

1.Oksandina pîruvatê bi karlêka dekarboksîlasyonê (bi înglîzî: decarboxylation) dest pê dike. Bi dekarboksîlasyonê, yek ji sê karbonên pîruvatê bi şêweyê karbona dîoksîd ji pîruvatê tê qetandin.Di dirêjiya bahenaseya xaneyê de cara pêşîn di vê gavê de CO2 tê berdan.[3]

2. Pêkhateya dukarbonî ya ji pîruvatê mayî, tê oksandin û asetat (CH3COO-, asîda asedî ya bi şeweyê îyon) peyda dibe. Elektronên hatine berdan tên guhaztin bo NAD+, enerjî bi şêweyê NADH tê embarkirin.[3]

3. Koenzîm A (CoA) bi bendê kovelendî bi navbeynkariya atoma sulfurê (kukurt), bi asetatê ve tê girêdan û asetîl CoA peyda dibe. Koenzîm A (Co A) ji vîtamîna B5, asîda pantotenî (bi înglîzî: pantothenic acid) tê çêkirin.[7]

Karlêka giştî ji bo dekarboksîlasyona pîruvatê

Encama oksandina pîrûvatê

Glukoza ko di qonaxa glîkolîzê de hatibû hilweşandin bo 2 pîruvatan, di kotahiya karlêka oksandina pîruvatê de , êdî bûye 2 komên asetîl û 2 molekulên karbona dîoksîd. Herwisa di vê gavê de ji molekulek glukozê heta niha 2 NADH dema glîkolîzê û 2 NADH jî dema çêbûna asetîl CoA de bi tevahî 4 NADH çêbûye.[6] Ango ji bo her molekulek glukozê, oksandina pîruvatê 2 caran rû dide.

2 Pîruvat + 2 NAD+ + 2 CoA → 2 asetîl CoA + 2 NADH + 2 CO2+ 2H+

NADH di qonaxa zincîra guhaztina elektronan de ji bo çêkirina ATP tên bikaranîn.[1] Di hanaseya xaneyê de erkê asetîl CoA, guhaztina koma asetîl e. Koma asetîl a ji pîruvatê peyda bûye ji aliyê asetîl CoA ve tê guhaztin bo qonaxa çerxa Krebs a xanehenaseyê.[7]


Çavkanî[biguhêre | çavkaniyê biguhêre]

  1. Jump up to:a b Losos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
  2. ^ Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  3. Jump up to:a b c Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
  4. ^ Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  5. Jump up to:a b Parker, N., Schneegurt, M., Tu, A. T., Forster, B. M., & Lister, P. (2016). Microbiology. Houston, Texas: Rice University.
  6. Jump up to:a b Solomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
  7. Jump up to:a b Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,

2024/01/28

Derbirîna gen

 

Pêvajoya çêbûna ARN an jî proteîn ji zanyariyên li ser beşek ADN-yê de kodkirî wekî derbirîna gen (bi înglîzî: gene expression) tê navkirin.[1]

Berhema derbirîna gen bi gelemperî proteîn e. Proteîn bi navbeynkariya ARN-peyamberê di rîbozoman de bi pêvajoya wergeranê tê çêkirin. Lê dibe ko hin caran jî berhema derbirîna gen ne proteîn, lê ARN-yên nayên wergerandin (ARN-yên nekodkirinê) bin. Wekî mînak, ARN-guhêzer, ARN-rîbozomî, ARN ya piçûk a navikê (bi înglîzî: small nuclear RNA (snRNA)).[2]

Pêwendiya gen, ADN û proteînan

Gen yekeyek ADN-yê ko zanyariyên ji bo çêkirina fîrepeptîdek an jî ARN-yek lixwe digire.[3]

Piraniya genan, zanyariyên ji bo avakirina proteîn lixwe digirin, zanyariyên bomaweyî bi şeweyê kodên bomaweyê tên guhaztin bo molekula ARN-peyamber.[3]

Gen di xaneyê de bi şeweyê rêzeya nukleotîdan, li ser ADN-yê de cih digirin. Kromozomên navikrasteqînan ji ADN û proteîna hîston pêk tên. Li ser kromozomek de dibe ku bi hezaran gen hebin. Ango genên mirov li ser kromozomên mirov de cih digirin.[4]

Pirraniya pêkhateyên xaneyan ji proteînan pêk tê an jî proteîn lixwe digirin û hemû kar û barên xaneyê bi alîkariya proteînan tê rêvebirin. Yek ji komên herî girîngtirînên proteînan enzîm in. Enzîm di nav xaneyê de lêza karlêkên kîmyayî kontrol dikin. Wekî mînak, duhendebûna ADN, çêbûna endamokên nû, ji molekulên sakar çêkirina molekulên aloz, ji xurekan bidestxistina enerjî, têkşikestina molekulên aloz ji bo molekulên sakar, hin mînak in ji bo karlêkên ko enzîm bi kar tînin.[5]

Ango ji bo zîndeçalakiya xwe, pêdiviya xaneyê bi proteînan û enzîman heye. Proteînên her cor xaneyê li gor erk û şêweyê wê ye. Bi derbirîna gen, zanyariyên bomaweyî ji gen ber bi proteînê tên arastekirin.[6] Her yek ji genek ji bo proteînek diyarkirî, kodek taybet dabîn dike.[5]

Gen di xaneyê de bi şeweyê rêzeya nukleotîdan, li ser ADN-yê de cih digirin. Ango genên mirov li ser kromozomên mirov de cih digirin.

Xaneyek çav, xaneyek kezebê û xaneyek hestiyê mirov, her çiqas erk û şêweyên wan ji hev gelek cuda bin jî, ji ber ko hemû xaneyên mirov bi dabeşbûna mîtozî ya zîgotê peyda bûne, bi eslê xwe hejmar û rêzeya ADN-yên hersê cor xaneyan jî heman in. Ji bilî hin istisnayan di hemû laşexaneyên (bi înglîzî: somatic cells) mirov de hejmar û rêzeya ADN-yê heman e. Heke hejmar û rêzeya ADN-yên hemû xaneyan heman bin, divê hemû xane heman genan lixwe bigirin.[7] Hema hemû xaneyên laş 46 kromozom lixwe digirin, ango di her xaneyek de 46 molekulên ADN-yê heye.

Mînakên ji bo hin istisnayan, xirokên sor û xaneyên koendama bergiriyê ne. Xirokên sor yek ji corek xaneyên xwînê ne. Gava di moxê hestî de tên berhemkirin xirokên sor ji her wekî mîna xaneyek asayî, xwediyê endamok û navik in, lê xiroka sor a pêgihîştî bênavik e, ango ADN lixwe nagire. Xirokên spî yên xwînê jî corek xaneyên xwînê ne. Di laş de li dij hokarên nexweşiyê bergiriya laş dabîn dikin. Hin corên xirokên spî, ji bo berhemkirina dijeten, rêzeya ADNyên xwe diguherînin.

Bi pêvajoya derbirîna gen, ji zanyariyên bomawebabet (genotîp), rûxsarebabet (fenotîp) peyda dibe. Bi rêbaza libergirtinê gen bi gelemperî bi şêweyê ARN-peyamber tê kopîkirin. ARN-peyamber di qonaxa wergeranê de ji bo çêkirna proteîn tê bikaranîn.[8] Proteîna nû çêbûyî an tevlê pêkhateya xane û şaneyên laş dibe, an jî di laş de wekî enzîm, dijeten, hormon hvd tê bikaranîn.

Gavên bingehîn ên ji bo derbirîna gen;

1. Enzîma ARN polîmeraz, beşek zincîra ADN ya qalib ji bo çêkirina molekula ARN-yê bi kar tîne. Kopîkirina rêzeya beşek nukleotîdên ADN-yê wekî libergirtin tê navkirin. Ango ji bo derbirîna gen, gava yekem qonaxa libergirtinê ye.[9]

2. Di xaneyên navikrasteqînan de, ARN-destpêk di navikê de tê sererastkirin, beşên întron ji ARN-yê tê cihêkirin, egzon bi hev re tên girêdan.

3.Rêzeya ARN-peyamber ji bo çêkirina molekulên proteînê tê bikaranîn. Asîdên amînî li gor kodonên ARN-yê bi avakirina bendên kîmyayî, li dû hev rêz dibin. Ango rêzeya nukleotîdên ADN û ARN-yê rêza zîncîra taybet a asîdên amînî diyar dike. Ji rêzeya ARN-peyamberê di rîbozoman de çêkirina proteîn, wekî wergeran tê navkirin. Proteîna hatî çekirin jî wekî berhema genê tê navkirin.[9]

Libergirtin

 Gotara bingehîn: Libergirtin (biyolojî)

Bi alîkariya ARN-polîmeraz û bi bikaranîna bazên temamker, li ser zincîra qalib a ADN-yê de çêkirina ARN, wekî libergirtin tê navkirin.[10] Ango bi libergirtinê, beşek ji zincîra nukleotîdên ADN-yê ji bo çêkirina zîncîra ARN-yê tê kopîkirin.[11]

Dema libergirtinê de ARN-polîmeraz zincîra qalib bi aresteya serê 3 ber bi serê 5 ve (3’-5’) bi kar tîne û şerîdek ARN-ya ko nukleotîdên wê temamkerên nûkleotîdên ADN-ya qalip e çêdike. Rêzeya nukleotîdên ARN-ya nûçêbûyî û ya zincîra kodkirinê heman in.

Heke beşa ADN-yê ji bo ARN-ya şîfre dide proteînan hatibe libergirtin (kopîkirin), ARN-ya nûçêbûyî wekî ARN-peyamber tê navkirin. ARN-peyamber (bi înglîzî: messenger RNA), ARN-ya kodkirinê ye. ARN-peyamber, di qonaxa wergeran de, ji bo çêkirina proteîn wekî qalib kar dike.

Ji libergirtina ADN-yê de ARN-yên nekodkirinê jî tên çêkirin. ARN-guhêzer, ARN-rîbozomî, ARN-ya mîkro (bi înglîzî: microRNA), ARN-ya piçûk a navikê (bi înglîzî: small nuclear RNA), ARN-ya piçûk a navikokê (bi înglîzî: small nucleolar RNA) û rîbozîm (bi înglîzî: ribozymes) ARN-yên nekodkirinê ne. Hemû corên ARN di çêkirin, sererastkirin û guherîna proteînan de alîkarî dikin.

Çalakiyên ji bo libergirtinê ji aliyê enzîma ARN-polîmeraz ve tê birêvebirin.[12] ARN-polîmeraz di navbera rîbonukleotîdan de bendên fosfodîester didin avakirin, bi vî awayî zincîra ARN-yê peyda dibe.[13]

Di navikseretayîyan de yek cor ARN-polîmeraz, di xaneyên navikrasteqînan de sê cor ARN-polîmeraz kar dikin bo rûdana libergirtinê.[2] Dema libergirtinê de ARN-polîmeraz zincîra qalib bi aresteya serê 3 ber bi serê 5 ve (3’-5’) bi kar tîne û şerîdek ARN-ya ko nukleotîdên wê temamkerên nûkleotîdên ADN-ya qalip e çêdike. Rêzeya nukleotîdên ARN-ya nûçêbûyî û ya zincîra kodkirinê heman in. Loma ev zincîra ADN-yê wekî zincîra kodkirinê (bi înglîzî: coding strand) tê navkirin.[14] Lê li dewsa Tîmîn, li zincîra ARN-yê de nukleotîda Urasîl heye.[15]Bi kurtasî, di xaneyê de libergirtin ji van gavên serekî pêk tê:

1. ARN-polîmeraz û hokarên gelemperî yên libergirtinê li beşa promoter a ADN-yê ve tên girêdan.

2. ARN-polîmeraz bi têkşikestina bendên hîdrojenê yên di navbera bazên temamker ên ADN-ya lûlpêça hevcot, zîncîrên ADN-yê ji hev cihê dike û bilqa libergirtinê ava dike.

3. ARN-polîmeraz rîbonukleotîdên ko temamkerên bazên zincîra qalib in, li ser zîncîra ADN-ya qalip zêde dike.

4. Bi alîkariya ARN-polîmeraz, di navbera rîbonukleotîdan de bendên fosfodîester tên avakirin bi vî awayî şerîda ARN-ya ji zincîra şekir-fosfat peyda dibe.

5. Bendên hîdrojenê yên di navbera zincîra qalib a ADN-yê û zincîra ARN-ya nûçêbûyî têk dişkên, ARN-ya nûçêbûyî serbest dimîne.

Heke xane yek ji xaneyên navikrasteqîn be, ARN-ya nûçêbûyî wekî ARN-destpêk tê navkirin. ARN-destpêk, piştê hin sererastkirin û guhertinan çalak dibe.[16] Lê di xaneyên navikseretayî de ARN-ya nûçêbûyî rasterast tevlê çalakiya çêkirina proteînan dibe.

Wergeran

 Gotara bingehîn: Wergeran (biyolojî)

Ji bo wergeranê, ARN-peyamber wekî qalib kar dike. Wergeran di rîbozoman de rû dide.

Piştê libergirtinê, zanyariyên li ARN-peyamber a ji ADN-yê hatiye kopîkirin, ji bo avakirina rêzeyek taybet a firêpeptîd (bi înglîzî: polypeptide) tê bikaranîn. Ji bo wergeranê, ARN-peyamber wekî qalib kar dike. Wergeran di rîbozoman de rû dide.[17] Bi wergeranê, asîdên amînî di rîbozomê de, li gor zanyariyên bomaweyî yên ADN-yê ko bi qonaxa libergirtinê bi şêweyên rêzeya kodonan derbasî ARN-peyamberê bibûn, bi rêzeyek taybet bi hev re tên girêdan û polîpeptîdek peyda dibe.[18] Çêbûna bendên peptîdî yên navbera asîdên amînî yên polîpeptîdê ji aliyê ARN-rîbozomî ve tê hankirin.[18] Asîdên amînî yên bo çêkirina poroteînek nû ji sîtoplazmaya xaneyê tê bi destxistin.

Di pêvajoya wergeranê de li gel ARN-peyamber, pêdivî bi rîbozom, ARN-guhêzer, asîda amînî, hin hokarên proteînî (hokarên destpêkirinê, hokarên dirêjbûne, hokarên berdanê) û hinek enzîman heye.

Dema wergeranê, bazên (nukleotîd) ARN-peyamberê sisê bi sisê tên xwendin. Li zincîra ARN-peyamber de rêzeya sê nukleotîdên li dû hev, wekî kodon tê navkirin. Kodon asîdek amînî destnîşan dike, ango kodon ji bo asîda amînî şîfre ye.[11] Wekî mînak kodona ji bo asîda amînî ya fenîlalanîn, 5'- UUC- 3' ye.

Xaneyên bakteriyan navik lixwe nagirin, ADN û rîbozomên wan di nav sîtoplazmayê de cih digirin, loma hê ko libergirtin bi dawî nebûye, li ARN-peyamberê wergeran jî dest pê dike. Di xaneyên navikrasteqînan de libergirtin di navikê de rû dide, ARN-peyamber derbasî sîtoplazmayê dibe, paşê wergeran dest pê dike.[19]

Di xaneyên navikrasteqîn (êkaryot) de her ARN-peyamberek tenê ji bo çêkirina yek corek proteîn şîfreya zanyariyên bomaweyî lixwe digire. Rîbozom kulavê 5′ nas dike, li ser ARN-peyamberê ber bi serê 3′ cih diguherîne, gava rastê kodona AUG yê tê, wergeran dest pê dike, şîfre ji bo çêkirina proteînek tê bikaranîn. Ango ji bo her corek proteîn, ARN-peyamberek bi genek taybet şîfrekirî tê avakirin.[20]

Rêkxistina derbirîna gen

Çi di zîndewerek tekxaneyî de, çi jî di zîndewerek firexaneyî de her xane kontrol dike ka derbirîna gen çi çaxê û çiqas rû bide.

Ji bo derbirîna gen pêdivî bi enerjî û cih heye. Loma heke di xaneyê de derbirîna hemû genan hertim rû bida, dibe ko enerjiya xaneyê têr nekira.

ADN-ya pêçayî di beşa ko libergirtin wê rû bide, vedibe, lê heke libergirtina hemû genan di carek de rû bida, divê hemû ADN-yên pêçayî vebûna. Di rewşek wisa de valahiyên nav xaneyê bi şerîdên ADN-yê tijî dibû û ji bo çalakiya endamokên xaneyê bi têra xwe cih nedima.

Herwisa heke di xaneyê de hemû gen bi carek ve bihatana derbirîn, qebareya xaneyê ji bo proteînên hatine çêkirin têr nedikir. Loma, divê di xaneyê de mekanîzmayek kontrolê hebe û biryar bide ka kîjan gen, kînga û çiqas tê derbirîn. Xirabûna mekanîzmaya kontrolê, şêrpence jî tê de, rê li ber gelek nexweşiyan vedike.[7]

Di xaneyê de hemû gen bi hev re nayên derbirîn, pêdiviya xaneyê bi kîjan proteînan an jî ARN-yan hebe, tenê derbirîna wan genan rû dide, genên din girtî dimînin.

Wekî mînak, hormona însulîn tenê di hinek xaneyên pankreasê de, enzîma pepsînojen jî di xaneyên gedeyê de tên berhemkirinrin. Di xaneyên pankreasê de genên bo berhemkirina pepsînojenê jî heye lê ji ber ko ev gen ne vekiri ye, xaneyên pankreasê pepsînojen berhem nakin. Lê genê ji bo çêkirina însulînê vekirî ye (çalak e), loma xaneyên pankreasê dikarin însulîn çêbikin. Bi heman awayê, di xaneyên gedeyê de jî genên bo berhemkirina pepsînojenê çalak in, lê genên bo berhemkirina însulînê girtî ne. Mînakek din jî proteîna hemoglobîn e. Tevê ko hemû xaneyên laş gena ji bo çêkirina hemoglobînê lixwe digirin, lê hemoglobîn tenê di xirokên sor ên xaneyên xwînê de heyê, Di xaneyên din de gena hemoglobînê girtî ye.[21]

Xaneyek kêm caran ji sedî 10ê genên xwe yekcar bikar tîne. Ango pirraniya genên xaneyê bi gelemperî bêdeng in. Gelek hokar bandor li xaneyê dikin ko kîjan gen, kînga were bikaranîn. Dibe ko hokar şertû mercên nav sîtoplazmayê be, şileya derveyê xaneyê be an jî cora xaneyê be. Ango derbirîna gen ji aliyê hin hokaran ve kontrolkirin. Hokarên bo kontrolkirina derbirîna gen, dibe ko derbirîna gen bide destpêkirin, pêvajoya derbirîna gen hêsantir bike, hêdî bike an jî rawestîne.[18]

Xane gava hevceyê berhemên genê ye, ji bo rêkxistina hevsengiyê di navbera berhemkirina proteîn û xerckirina enerjiyê de gelek stratejiyan bi kar tîne. Rêbazên ko ji bo bi cih anîna vê erkê de cih digirin, bi tevahî wekî rêkxistina derbirîna gen tê navkirin.

Hinek corên gen di xaneyên çalak de hertim hema bi rêjeyek sabit tên derbirîn. Ev genan ji bo berdewamiya çalkiyên asayî yên xaneyê pêwist in. Wekî mînak, genên ARN-rîbozomî ji bo avakirina rîbozoman pêwist in.

Di xaneyên zindî de hertim pêdivî bi çêkirina proteînan heye, rîbozom jî ji bo çêkirina proteîn kar dikin, loma di xaneyê de divê genên bo şîfrekirina ARN-rîbozomî hertîm vekirîbin.[22]

Lê derbirîna hinek genan tenê di bin şert û mercên taybet de rû dide. Dibe ko ev rewşên taybet, di dema peresîn, geşebûn an jî gorankariya xaneyê de be. Wekî mînak berî ko xane dabeş bibe, ji bo zêdekirina hejmara endamok, enzîm û rêjeya sîtoplazmayê pêdiviya wê bi proteînan heye loma bi gelemperî di xaneyê de di qonaxa S û qonaxa G2 ya înterfazê de derbirîna genan zêdetir dibe.

Her çend mekanîzmayên ku derbirîna genan rêk dixin pir û tevlihev in jî, encama dawî ev e ku xane dema ku hewcedariya wan bi proteînan hebin, gen derdibirînin.[22]

Ji bo rêkxistina derbirîna gen, du mekanîzmaya konrolê kar dikin. Di rêkxistina erenî (bi înglîzî: positive regulation) de, gen girtiyê, heta ko sinyalên erenî wernegire çalak nabe û derbirîn dest pê nake. Di rêkxistina erenî de ji bo vekirina gen, pêdivî bi çalakkerek (bi înglîzî: activator) heye.

Di rêkxistina neyînî de gen vekirî ye û çalak e lê hin hokarên rêgir (hokarên westîner) (bi înglîzî: inhibitory factors) bi genê ve giredayî ne û nahêlin derbirîna gen rû bide. Di rêkxistina neyînî de bi gelemperî gen ji aliyê pestanbarek (bi înglîzî: repressor) hatiye girtin û gava pestanbar jê tê dûrxistin, derbirîna gen jî dest pê dike.[2]

Zîndewerên navikseretayî (prokaryot) zîndewerên tekxaneyî ne û bênavik in, loma ADN-yên wan di nav sîtoplazmayê de cih digire. Ji bo çêkirina proteîn, pêvajoyên libergirtin û wergeran hama di heman demê de rû didin. Gava bi têra xwe proteîn hat berhemkirin, libergirtin radiweste. Wekî encam, kontrola serekî ya ji bo kîjan proteîn û çiqas proteîn tê çêkirin, bi rêkxistina libergirtina ADN-yê pêk tê. Gava pêdivî bi zêdetirîn proteîn hebe, rêjeya libergirtinê zêde dibe. Ango di xaneyên navikseretayiyan de derbirîna gen bi gelemperî di asta libergirtinê de tê kontrolkirin.

Bi rêbaza operon, rêkxistina libergirtina hemû genên kodên enzîmên katalîzkirina karlêkên kîmyayî yên li dû hev in, bi hevdemkî tên kontrolkirin. Bi

Di xaneyên navikseretayî de rêkxistina derbirîna genan de rêbazek cuda jî tê bikaranîn, kontrola derbirîna gen ji aliyê operon ve tê rêvebirin.

Di xaneyê de karlêkek kîmyayî bi gelek gavên li pêyhev rû dide. Ango ji bo karlêkek kîmyayî dibe ko pêdivî bi çendan cor genan hebe.

Bi rêbaza operon, rêkxistina libergirtina hemû genên kodên enzîmên katalîzkirina karlêkên kîmyayî yên li dû hev in, bi hevdemkî tên kontrolkirin. Bi vî awayî heke pêdivî hebe, hemû enzîm bi carek ve tên berhemkirin û heke pêdivî tune be vê gavê çêkirana hemû enzîmên karlêkê bi carek ve tên rawestandin, gen bêdeng dibin. Mekanîzmaya kontrola koma genên têkîldar rê dide bakteriyan ko li hember guherînên hawirdorê, bi lez bertek nîşan bidin.[23]

Di xaneyên navikrasteqînan de ADN di navikê de ye û li wir bi libergirtine ARN-peyamber çêdibe. ARN-peyamber derbasî sîtoplazmayê dibe, di rîbozoman de tê wergerandin bo çêkirina proteîn. Pêvajoyên libergirtinê û wergeranê bi parzûna navikê ji hev hatiye cihê kirin.

Di xaneyên navikrasteqînan de rêkxistina derbirîna gen di gelek qonaxan de rû dide.[24]

1.Dema ADN vedibe û bi hokarên libergirtinê ve girê dibe,

2.Di qonaxa libergirtinê de,

3.Piştî libergirtinê di qonaxa sererastkirina ARN-peyamber a destpêk de,

4. Dema ARN-peyamber tê wergerandin bo proteîn

5. Piştî çêbûna proteîn[7]

Ferhengoka Biyolojiyê

https://drive.google.com/file/d/1YnuTBjHKTr0mo5cEZ7dkhY-LBKlqo91T/view?usp=sharing

Çavkanî

  1. ^ Allison, L. (2007). Fundamental Molecular Biology. Blackwell Publishing Limited.
  2. Jump up to:a b c Clark, D. P. (2005). Molecular biology. Elsevier Academic Press.ISBN: 0-12-175551-7
  3. Jump up to:a b Berk, A., Kaiser, C. A., Lodish, H., Amon, A., Ploegh, H., Bretscher, A., & Krieger, M. (2005). Molecular Cell Biology (5th ed.). CA.
  4. ^ Jones, M., Fosbery, R., Gregory, J., & Taylor, D. (2014). Cambridge International AS and A Level Biology Coursebook with CD-ROM (4th ed.). Cambridge, MA: Cambridge University Press
  5. Jump up to:a b Betts, J., Desaix, P., Johnson, E., Johnson, J., Korol, O., & Kruse, D. et al. (2017). Anatomy & physiology. Houston, Texas: OpenStax College, Rice University,
  6. ^ Campbell, N. A., & Reece, J. B. (2008). Biology (8th ed.). San Francisco, CA: Benjamin-Cummings Publishing Company.
  7. Jump up to:a b c Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,
  8. ^ Losos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
  9. Jump up to:a b Hartl, D. L., & Jones, E. W. (1998). Genetics: Principles and analysis. Sudbury, MA: Jones and Bartlett. ISBN 0-7637-0489-X
  10. ^ S.W.D. and King, R.C. (2002) A dictionary of genetics. 7th. ed. New York, NY, USD: Oxford University Press.
  11. Jump up to:a b Solomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
  12. ^ Robert F. Weaver(2010).—5th ed.Published by McGraw-Hill
  13. ^ Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). NY: Garland Science.
  14. ^ Starr, C., & McMillan, B. (2010). Human Biology (8th ed.). Pacific Grove, CA: Brooks/Cole Publishing Company.
  15. ^ Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  16. ^ David L. NelsonMichael M. Cox(2013). Lehninger Principles of Biochemistry. : W. H. FREEMAN AND COMPANY • New York ISBN-13: 978-1-4641-0962-1
  17. ^ Lawrence, E. (2005). Hendersons dictionary of biology. Harlow: Pearson/Prentice Hall. ISBN 978-0-13-127384-9
  18. Jump up to:a b c Starr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.
  19. ^ Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
  20. ^ W T. Godbey, in Biotechnology and its Applications (Second Edition), 2022
  21. ^ Waugh, A., Grant, A., Chambers, G., Ross, J., & Wilson, K. (2014).Ross and Wilson anatomy and physiology in health and illness (12th ed.). Edinburg: Elsevier.
  22. Jump up to:a b Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  23. ^ Ralston, A. (2008) Operons and prokaryotic gene regulation. Nature Education 1(1):216
  24. ^ Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.

2023/12/10

Wergeran

 


    Pêvajoya çêkirina proteînan bi xwendina zanyariyên bomaweyî yên di zincîra ARN-peyamber de bi şeweyî kodon şîfrekirî, wekî wergeran (bi înglîzî: translation) tê navkirin.

2 ji 3 beşên madeyên endamî yên xaneyê ji proteînan pêk te. Ji bo çêkirina proteînan xane gelek enerjî û madeyên xav xerc dike. Dema di xaneyê de bi têra xwe xurek an jî enerjî tune be, xane nikare çêkirina proteînan di asta asayî de bidomîne

--Taybetiyên bingehîn ên wergeranê--

Piştê libergirtinê, zanyariyên li ARN-peyamber a ji ADN-yê hatiye kopîkirin, ji bo avakirina rêzeyek taybet a firêpeptîd (bi înglîzî: polypeptide) tê bikaranîn. Ji bo wergeranê, ARN-peyamber wekî qalib kar dike. Wergeran di rîbozoman de rû dide. Bi wergeranê, asîdên amînî di rîbozomê de, li gor zanyariyên bomaweyî yên ADN-yê ko bi qonaxa libergirtinê bi şêweyên rêzeya kodonan derbasî ARN-peyamberê bibûn, bi rêzeyek taybet bi hev re tên girêdan û polîpeptîdek peyda dibe. Çêbûna bendên peptîdî yên navbera asîdên amînî yên polîpeptîdê ji aliyê ARN-rîbozomî ve tê hankirin. Asîdên amînî yên bo çêkirina poroteînek nû ji sîtoplamaya xaneyê tê bi destxistin.

Dema wergeranê, bazên (nukleotîd) ARN-peyamberê sisê bi sisê tên xwendin. Li zincîra ARN-peyamber de rêzeya sê nukleotîdên li dû hev, wekî kodon tê navkirin. Kodon asîdek amînî destnîşan dike, ango kodon ji bo asîda amînî şîfre ye. Wekî mînak kodona ji bo asîda amînî ya fenîlalanîn, 5'- UUC- 3' ye.

Sedema ko kodon ne yek an jî du, lê ji sê bazan pêk tê, bi matemetîkê hê baştir tê şîrovekirin. Çar cor baz (A,U,G,C) di pêkhateya ARN-peyamberê de cih digirin. Di xaneyê de herî kêm 20 cor asîda amînî heye. Ango divê herî kêm 20 cor şîfre hebe ko her asîdek amînî were şîfrekirin. Heke ji bo şîfrekirina asîdek amînî yek nukleotîdek (baz) bihata bikaranîn wê gavê tenê 4 şîfre peyda dibû û 16 asîdên amînî nedihatin şîfrekirin (A= sîda amînî ya yekem, U= aa ya duyem, G= aa ya sêyem û C= aa ya çarem).
Heke du baz ji bo şîfrekirinê bihatina bikaranîn, (4*4) wê gavê 16 şîfre dihat bidestxistin, lê şîfrekirina çar asîdên amînî rû nedida. (AA= asîda amînî ya yekem, AU= aa ya duyem, AC= aa ya sêyem, AG= aa ya çarem, UU= aa ya pêncem, UA aa ya şeşem......)
Heke ji bo şîfrekirinê 3 cor baz werin bikaranîn (4*4*4), vê gavê 64 şîfre tên bidestxistin. Ev hêjmar jî ji bo 20 corên asîda amînî têr e.

Li ser zincîra ARN-peyamberê de; rêzeya kodonên ji bo destnîşankirina asîdên amînî, kodona destpêk û kodona westanê bi tevahî wekî “koda bomaweyî” (bi inglîzî: genetic kod) tê navkirin. Koda bomaweyî ji 64 kodonan pêk tê. 61 kodon pişkdar in ji bo diyarkirina asîdên amînî. 3 kodon, kodonê westan (westanekodon) in. Westanekodon kar dikin bo rawestandina kirdarê wergeranê û tu asîdek amînî diyar nakin, loma ji bo kodona westan, dijekodon tune. Kodonek koda bomaweyî jî wekî “kodona destpêk” tê navkirin, kodona destpêk asîda amînî ya metîonîn destnîşan dike.

Kodonek dikare tenê yek cor asîdek amînî diyar bike. Lê du an jî zêdetir cor kodon dikarin bo heman asîda amînî şîfre bidin. Wekî mînak kodona GGU bo asîda amînî ya glîsîn şîfre ye. Lê glîsîn ne tenê ji aliyê kodona GGU ve tê şîfrekirin. Kodonên GGC, GGA û GGG jî şîfre didin glîsînê.

Xaneyên bakteriyan navik lixwe nagirin, ADN û rîbozomên wan di nav sîtoplazmayê de cih digirin, loma hê ko libergirtin bi dawî nebûye, li ARN-peyamberê wergeran jî dest pê dike. Di xaneyên navikrasteqînan de libergirtin di navikê de rû dide, ARN-peyamber derbasî sîtoplazmayê dibe, paşê wergeran dest pê dike.

Di xaneyên navikrasteqîn (êkaryot) de her ARN-peyamberek tenê ji bo çêkirina yek corek proteîn şîfreya zanyariyên bomaweyî lixwe digire. Rîbozom kulavê 5′ nas dike, li ser ARN-peyamberê ber bi serê 3′ cih diguherîne, gava rastê kodona AUG yê tê, wergeran dest pê dike, şîfre ji bo çêkirina proteînek tê bikaranîn. Ango ji bo her corek proteîn, ARN-peyamberek bi genek taybet şîfrekirî tê avakirin.

Piştî gavên libergirtin û wergeranê, molekula ko ji rêzeya asîdên amînî peyda dibe, bi eslê xwe ne proteîn, lê firepeptîd( polîpeptîd) e. Proteîn dibe ko ji gorana yek an jî zêdetir firepeptîdan pêk were. Hinek proteîn ji du an jî zêdetir firepeptîdên wekhev pêk tê, ango ji bo çêbûna proteînê yek gen şîfre dide ARN-peyamberê. Hinek proteîn jî ji du an jî zêdetir cor firepeptîdan pêk tên,hejmara cora genên ji bo çêbûna van proteînan kar dikin, bi qasî hejmara coro firepeptîdên wê proteînê ne. Wekî mînak hemoglobîn proteînek taybet e di xirokên sor ên xaneyên xwînê de. Hemoglobîn ji çar fireptîdan pêk tê (du firepeptîdên α û du firepetîdên β) . Ango ji bo çêbûna proteîna hemoglobînê, pêdivî bi du cor gen û çar firepeptîdan heye

Di pêvajoya wergeranê de li gel ARN-peyamber, pêdivî bi rîbozom, ARN-guhêzer, asîda amînî, hin hokarên proteînî (hokarên destpêkirinê, hokarên dirêjbûne, hokarên berdanê) û hinek enzîman heye.

--Rîbozom--

Rîbozom ji bo wergera koda bomaweyî û çêkirina firepeptîdê, ARN-peyamber a qalib, ARN-guhêzer, û firepetîda nû tê çêkirin bi hev re digire.

Rîbozom ji proteîn û ARN-rîbozomî pêk tê. Her rîbozomek ji du binebeşan pêk tê, binebeşa gir û binebeşa piçûk. ARN-rîbozomî bi proteînên taybet ve yek dibe û pêkhateya bi navê “rîbonukleoproteîn“ peyda dibe. Herdu binebeşên rîbozomê ji rîbonukleoproteîn pêk tên. Dema çêkirina proteîn dest pê dike, herdu binebeş yek dibin û rîbozom peyda dibe.

Rîbozomên, herwiha binebeşên navikrasteqînan ji yên bakteriyan girtir in. Rîbozomên navikrasteqînan 80S in, ji binebeşên 40S û 60S pêk tên, ên bakteriyan jî 70S in û ji binebeşên 30S û 50S pêk tên. Lê ribozomên hemû zîndeweran ji bo çêkirina proteînan, bi heman awayî kar dikin. Dema çêkirina proteînê de rîbozom, di navbera dijekodona ARN-guhêzer û kodona ARN-peyamber ve hevgirtin û guncanîtiyê hêsantir dike.

Li gel rîbozomên serbest ên di nav sîtoplazmayê, rîbozomên li ser retîkûlûma endoplazmî ya zivir jî dikarin zanyariyên li ser ARN-peyamberê wergerînin û proteîn çêkin. Proteîna nûçêbûyê dibe ko di nav sîtoplazmayê de bimîne û ji bo çalakî an jî pêkhateya xaneyê were bikaranîn. Rîbozomên li ser retîkûlûma endoplazmî, proteînên nûçebûyî dişînin nav retîkûlûma endoplazmî, proteîn li wir li gor erkê xwe tên guhertin.

Şikil û pêkhateya taybet a rîbozomê ji ber erkê wê ye. Du erkên bingehîn ên rîbozomê heye, vekirina şîfreya ARN-peyambera hatiye kopîkirin û avakirina bendê peptîdî.
Vekirina şîfre (deşîfre), li binebeşa piçûk a ribozomê de rû dide. Ji bo avakirina bendên peptîdî, pêdivî bi enzîma peptîdîl tranferaz (bi înglîzî:peptidyl transferase) heye, ev enzîm di binebeşa gir a rîbozomê de cih digire. Ji bo her asîdek amînî enzîmek peptîdîl transferaz heye.
Li ser rîbozomê çar qadên ji bo girêdanê heye. Qadek (cih) ji bo gêrêdana ARN-peyamber, sê qad jî ji bo girêdana ARN-guhêzer e.

ARN-guhêzer a hilgirê asîdek amînî ji sîtoplazmayê tê rîbozomê û bi qada-A (bi înglîzî: A site, aminoacyl site) ve tê girêdan.
Qada-P (bi înglîzî: P site, peptidyl-tRNA site) ARN-guhêzerê bi zincîra firepeptîda tê çêkêrin ve digire.
ARN-guhêzer a asîda amîniya xwe li zincîra firepeptîdê zêdekiriye, ji qada-E (bi înglîzî: E site, exit site) rîbozomê diterikîne.
Di rîbozomek de her carê tenê du ARN-guhêzerên bi asîda amînî barkiri cih digire.(Di qada- A û di qada-P)


--ARN-guhêzer (ARN-g)--

Kodonên molekula ARN-peyamber ji bo asîdên amînî şîfre ne, lê ARN-peyamber nikare rasterast asîdên amînî yên bi şîfreyê hatiye diyarkirî nas bike û bi wan re girêdan ava bike. Ango ji bo zanyariyên di ARN-peyamberê bo çêkirina proteînan were bikaranîn, pêdivî bi molekulek navbeynkar heye, ev molekul jî ARN-guhêzer e.
Asîdên amînî yên nav sîtoplazmayê, li gor rêzeya şîfreyên ARN-peyamberê, ji aliyê ARN-guhêzer ve ji bo avakirina zincîrek firepeptîd tên guhaztin bo rîbozoman.
Di pêvajoya wergeranê de, xane peyama bomaweyî şîrove dike, û li gor wê firepeptîdek ava dike. Peyama bomaweyî di molekula ARN-peyamber de bi şeweyî rêzeyên kodonan in. ARN-guhêzer jî werger in. Xane di sîtoplazmaya xwe de hertim ji hemû 20 corên asîdên amînî, bi têra xwe embar dike. ARN-guhêzer ji sîtoplazmaya xaneyê, asîdek amînî hildigire û diguhazîne ribozomê. Rîbozom asîdên amînî bi hev re girê dide û rêzeyek taybet a zincîrek firepeptîd peyda dibe.

Molekulên ARN-guhêzer ne yek cor in, her corek ARN-guhêzer kodonek taybet a ARN-peyamberê werdigerîne bo asîdek amînî ya taybet. Gava ARN-guhêzer nêzikê rîbozomê dibe, kotahiya serê 3' yê ARN-guhêzer bi asîdek amînî ya taybet ve girêdayî ye, serê din jî sêyaniya nukleotid ên bi nave dijekodon lixwe digire. Dijekodon temamkerê kodona ARN-peyamber e û li gor koda bomaweyî, her dijekodonek asîdek amînî li firepeptîdê zêde dike an jî wergeranê radiwetstîne. Wekî mînak, kodona UUU ya ARN-peyamber wekî şîfreya bo asîda amînî ya fenîlalanîn tê wergerîn. Ji bo wê kodonê nukleotîdên temamkerên ARN-guhêzer AAA ye, ango dijekodona AAA û kodona UUU temamkerê hevdu ne. ARN-guhêzer a ko dijekodona AAA lixwe digire, di kotahiya serê 3' de asîda amînî ya fenilalanin hildigire.

--Çalakkirin û guhaztina asîda amînî--

Ji bo çêkirina firepeptîdek bi rêzeyek diyarkiri, divê du mercên bingehîn ên kîmyayî werin bicihanîn.
1. Ji bo hêsankirina avakirina bendên peptîdî, divê koma karboksîlî ya her asîdek amînî were çalakkirin.
2. Divê di navbera her asîdek amînî ya nû û zanyariya di ARN-peyamber de şîfrekirî de girêdanek were avakirin.
Di qonaxa destpêka çêkirina proteîn de, bi girêdana asîda amînî ya bi ARN-guhêzer ve ev herdu merc tênin cih.
Girêdana asîda amînî ya rast a bi ARN-guhêzera rast ve gelek girîng e. Ev bûyer ne di rîbozomê de, lê di sîtoplazmayê de rû dide. Ji 20 asîdên amînî her yek, bi xerckirina enerjiya ATP, bi ARN-guhêzerek taybet ve bi bendên hevbeş (kovalendî) tê girêdan. Ji bo gêrêdanê, enzîma amînoasîl ARN-g sentetaz (bi înglîzî: aminoacyl tRNA synthetases) kar dike. ARN-guhêzera bi asîda amînî ve girêdeyî, wekî ARN-guhêzera bargeyî (bi inglîzî: charged tARN) tê navkirin.


Ji bo girêdana asîdek amînî bi ARN-guhêzer ve, herî kêm corek ji amînoasîl ARN-guhêzer sentetaz kar dike. Ango di xaneyê de ji zêdetirê 20 corên vê enzîmê heye. Hejmara cora enzîma amînoasîl ARN-g sentetaz di hemû corên zîndeweran de ne yek e.
Her yek ji ARN-g sentetaz navê xwe ji asîda amînî ya taybet a bi ARN-guhezerê ve tê girêdan digire. Wekî mînak, alanîl ARN-g sentetaz, asîda amînî ya alanînê nas dike û wê bi yek ji çar ARN-guhêzerên bi dijekodona alanînê (CGA,CGG,CGU,CGC) ve girê dide

Enzîma amînoasîl ARN-g sentetaz bi çar gavên serekî asîdek amînî bi ARN-guhêzer ve girê dide.

1. Asîda amînî ya taybet û ATP (adenozîna sê fosfatî) bi enzîmê ve tên girêdan. Asîda amînî bi ATP-yê ve dikeve reaksiyonê, serê koma karboksîlî ya asîda amînî bi AMP (adenozîna tek fosfatî) ve tê girêdan. Di heman demê de du fosfat bi şêweyî pîrofosfat (bı inglizi: pyrophosphate) tên berdan. Di navbera asîda amînî û AMP-yê de bendên bi enerjiya asta bilind ava dibe.Pêkhateya ji asîda amînî û AMP pêk tê, wekî asîda amînî ya çalakkirî tê navkirin.

2. Asîda amînî ya çalakbûyî, bi enzîme ve girêdayî dimîne, paşê ARN-guhêzer jî bi enzîmê ve dibeste.

3. Asîda amînî ji AMP tê cihêkirin û tê guhaztin bo serê 3′ yê ARN-guhêzerê. Bi vî awayî ARN-guhêzera bargeyî peyda dibe û AMP ji enzîmê cihê dibe. Asîda amînî ya bi ARN-guhêzer ve girêdayî hin caran wekî amînoasîl ARN-g (bi înglîzî:aminoacyl–tRNA) jî tê navkirin.

4. ARN-guhêzera bargeyî (amînoasîl ARN-g) ji enzîmê tê berdan

Wergeran jî wekî mîna libergirtinê ji sê pêngavên sereke pêk tê, destpêkirin, dirêjbûn û dawîbûn. Pêdiviya hersê pêngavan jî bi hokarên proteînî heye. Herwisa di hinek qonaxên destpêkirin û dirêjbûnê de pêdivî bi enerjiyê jî heye. Enerjî ji hilweşîna GTP (guanozîna sêfosfatî) û ATP tê bidestxistin.

--Destpêkirin--

Ji bo qonaxa destpêkirinê, pêdivî bi rîbozom, hokarên destpêkirinê, ARN-peyamber, ARN-g destpêker û enerjiya ji GTP (guanîna sê fosfatî) heye.

Qonaxa destpêkirinê; ARN-peyamber, ARN-guhêzer a hilgirê asîda amînî ya yekem û herdu binebeşên rîbozomê tîne ber hev.

Pêvajoya destpêkirinê cihê kodona rast a wê wergeran dest pê bike diyar dike, bi vî awayî li dawiya wergeranê firepeptîdek bi asîdên amînî yên di rêzeya rast de peyda dibe.

Gava yekem a destpêkirinê de ARN-peyamber li aliyê serê 5' bi binebeşa piçûk a rîbozomê ve girê dibe. Di xaneyên navikrasteqîn de kulavê 5' alîkariya binebeşa piçûk dike ko bi ARN-peyamberê ve were girêdan.
Binebeşa piçûk li ser ARN-peyamberê ber bi serê 3' ve diçe, heta ko rastê kodona AUG were. Ji bo çêkirina proteîn (firepeptîd) AUG kodona destpêk e .
ARN-guhêzerek taybet a destpêker jî bi kodona destpêkê girê dibe. Di xaneyên navikrasteqînan de ARN-guhêzer a destpêker, asîda amînî ya metîonîn hildigire, bi dijekodona xwe ya UAC, bi kodona AUG ya destpêk ve dibeste.

ARN-peyambera bakteriyan kulavê 5' lixwe nagire, lê beşek taybet a bi navê “cihê girêdana rîbozomê” lixwe digire. Cihê girêdana rîbozomê (bi înglîzî: ribosome-binding site ) wekî “rêzeya Shine-Dalgarno”jî tê navkirin. Cihê girêdana rîbozomê 5 - 9 nukleotîdên berê (jorê) kodona AUG de ye .Wekî mînak, li ser ARN-peyamber a bakteriya E. coli de, cihê girêdanê bi rêzeya 5′-AGGAGGU-3′ e. Binebeşa piçûk a rîbozomê li wir girê dibe û bi vî awayî cihê kodona destpêkirinê diyar dibe.

Di xaneya bakteriyan de ARN-guhêzera destpêker corek din a metîonînê hildigire. Ji asîda formîlî, koma formîl bi koma amînî ya metîonîn ve girê dibe û fMet (N-formylmethionine) peyda dibe. Herwisa di xaneyên bakteriyan de sê cor proteînên hokara destpêkirinê (IF1, IF2 û IF3) kar dikin, lê di xaneyên navikrasteqînan de bi qasî 10 corên hokara destpêkirinê heye (eIF2 (3 binebeş), eIF3, eIF4 (4 binebeş), eIF5).
Wekî gava duyem, binebeşa gir a rîbozomê û binebeşa piçûk yek dibin û rîbozoma çalak peyda dibe. ARN-guhêzer a destpêker di qada-P ya rîbozomê de cih dibe.

--Dirêjbûn--

Di qonaxa dirêjbûnê de asîdên amînî yek bi yek li ser zincîra polîpeptîdê tên zêdekirin. Rêzeya peptîdê ji ji aliyê rêza kodonên ARN-peyamberê ve tê diyarkirin. Qonaxa dirêjbûnê ji sê gavên serekî pêk tê;
1. Li qada- A yê de girêdana ARN-guhêzera bargeyî
2. Avakirina bendê peptîdî
3. Cihguhertin (bi înglîzî: translocation)

Dijekodona ARN-guhêzerek nû ya bi asîdek amînî barkirî, bi kodona ARN-peyamber ve di qada-A ya rîbozomê de tê girêdan. Ji bo girêdana kodon û dijekodona guncav, proteînên bi navê “hokarên dirêjbûnê” alîkarî dikin. Di xaneya bakteriyan de sê cor hokarên dirêjbûnê heye(EF-Tu, EF-Ts û EF-G).Herwisa xanyên navikrasteqîn jî ji hokarên dirêjbûnê sê cor lixwe digirin(eEF1α, eEF1βγ û eEF2). Heke dijekodona rast di qada-A de cih bûbe, wê gavê di navbera asîda amînî ya qada-P û ya qada-A de bendê peptîdî ava dibe û dîpeptîdek çêdibe. Dîpeptîd xwe bi ARN-guhêzer a qada-A ve girê dide. Paşê bi alîkariya hokarek dirêjbûnê, rîbozom li ser ARN-peyamberê ber bi serê 3' ve piçek dilive û cihê xwe bi qasê kodonek diguherîne. Ji bo cihguherînê (bi înglîzî: translocation) pêdivî bi hokarek dirêjbûnê û bi enerjiya GTP heye.
Bi livîna rîbozomê kodona destpêkê di qada-E de cih dibe û ARN-guhêzer a destpêk, rîbozomê diterikîne. Kodona duyem di qada-P de cih dibe. Qada-A jî ji aliyê kodona sêyem ve tê tijîkirin. Dijekodona ARN-guhêzer a nû ya asîdek amînî hilgirtî, di qada-A ya rîbozomê de bi kodona sêyemîn a ARN-peyamber ve tê girêdan. Bi vî awayî asîdên amînî yek bi yek li asîda amînî ya destpêk tên zêdekirin.

Di rîbozomê de leza zêdekirina asîdek amînî li ser zincîra firepeptîdê, wekî rêjeya wergeranê (bi înglîzî: translation rate) tê navkirin. Di germahiya 37°C de rêjeya wergerana bakteriyan di çîrkeyek de bi qasî 15 asîdên amînî ye. Di xaneyên navikrasteqîn de leza wergeranê hêdî ye, wekî mînak di xirokên sor ên xaneyên xwînê de rêjeya wergeranê di çîrkeyek de 2 asîdên amînî ye.

--Dawîbûn--

Di qonaxa dirêjbûnê de heke yek ji kodonên UGA, UAG, UAA di qada-A ya rîbozomê de cih bibe, dirêjbûn radiweste. Ji ber ko kodonên UGA, UAG, UAA asîdek amînî diyar nakin, ango ji bo asîdek amînî şîfre lixwe nagirin, êdî asîdek amînî ya nû li firepeptîdê nayê zêdekirin. Ev hersê kodon wekî westanekodon tên navkirin. Kodona westanê ne ji aliyê ARN-guhêzerek lê ji aliyê proteînek a bi navê “hokara berdanê” (bi înglîzî: release factor) ve tê naskirin.

Qonaxa dawîbûnê di bakterî û xaneyên navikrasteqînan de bi heman awayî rû dide. Lê bakterî ji bo nasîna kodona westanê du cor hokarên berdanê (RF1 û RF2) bi kar tînin, xaneyên navikrasteqîn tenê yek hokarek (eRF ) lixwe digire.
Di xaneya bakteriyê de RF1 kodona UAA an UAG nas dike. RF2 jî kodona UUA an UGA nas dike.

Gava hokara berdanê li ser kodona westanê ya li qada -A girê dibe, enzîma peptîdîl transferaz (bi înglîzî: peptidyl transferase) çalak dibe. Peptîdîl transferaz li dewsa asîdek amînî, molekulek avê li peptîdîl-ARN-guhêzerê zêde dike. Ev reaksiyon kotahiya karboksîlî ya firepeptîdê ji ARN-guhêzera di qada-P yê hildiweşîne. Zincîra firepeptîd a nûçêbûyî, ARN-guhêzer û ARN-peyamber rîbozomê diterikînin, herdu binebeşên rîbozomê ji hev cihê dibin.

--Polîrîbozom--

Bi gelemberî ne yek lê gelek rîbozom di heman demê de li ser heman ARN-peyamberê de karê wergeranê bi rêve dibin, ev rewş wekî polîrîbozom an jî polîzom tê navkirin. Polîzom li gel xaneyên navikrasteqînan, di xaneya bakterî de jî rû dide.
Di wêneyên bi mîkroskoba elektronî ya xaneyan de li ser ARN-peyambera tê wergerandin de rîbozom bi şeweyî guşî xuya dibin.

--Di mîtokondrî û kloroplast de çêkirina proteînan--

Di xaneyê de ji bilî sîtoplazmayê, endamokên mîtokondrî û kloroplast jî dikarin ji bo xwe hinek proteîn çêbikin.
Kromozom û rîbozomên mîtokondrî û kloroplastan dişibe yên bakteriyan. Loma di van endamokan de pêvajoya çêkirina proteînan dişibe ya naviksereteyiyan (prokaryot). Lê mîtokondrî û kloroplast nikarin hemû proteînan berhem bikin, piraniya proteînên xwe ji sîtoplazmayê werdigirin. Di xaneyên memikdaran de mîtokondrî dikare bi qasî 10 cor proteîn çêbike. Riwek dikarin di kloroplastên xwe de bi qasî 50 cor proteîn çêbikin.

*Ev xebat li ser wîkîpediyaya kurdî jî hat zêdekirin.
https://ku.wikipedia.org/wiki/Wergeran_(biyoloj%C3%AE)