Celadet Alî Bedîrxan

Me zanî ko xweseriya me, di zimanê me de ye û em bi tenê bi hînbûna xwendin û nivîsandina zimanê xwe û parastina wî, di civata miletan de, wek miletekî xweser dikarin bijîn û payedar bin.
Celadet Alî Bedîrxan (1893-1951)
Showing posts with label rîbozom. Show all posts
Showing posts with label rîbozom. Show all posts

2024/01/20

Gen

 

Gen, an jî bohêl (bi înglîzî: gene) yekeya bingehîn a zanyariyên bomaweyî (genetîkî) ye, ji bavanan diguhaze bo weçeyan.[1]

Pênase

Di warê biyolojiya kîmyayî (biochemistry/ biological chemistry) û biyolojiya molekulî (molecular biology) de pênaseya gen ji ya bomawezaniya Mendelî piçek cuda ye. Le hema di hemû pêneseyan de proteîn û ARN wekî du peyvên hevbeş cih digirin.

-Rêzeya ADN-yê ya kodkirina zanyariyên bomaweyî bo çêkirina proteîn an jî ARN.[2]

-Rêzeyek nukleotîdên li ser molekula ADN-yê ko berpirse bo kontrolkirin û derketina sîfetek bomaweyî ya diyarkirî.

-Gen parçeyek ADN-yê ko berpirsiyar e ji bo çêbûna molekulek ARN-yê.[3]

-Gen yekeyek ADN-yê ko zanyariyên ji bo çêkirina fîrepeptîdek an jî ARN-yek lixwe digire. Piraniya genan zanyariyên ji bo avakirina proteîn lixwe digirin, zanyariyên bomaweyî bi şeweyê kodên bomaweyê tên guhaztin bo molekula ARN-peyamber.[4]

-Gen rêzeyek nukleotîdên ADN-yê ye ko zanyariyên ji bo çêkirina ARN an jî firepeptîdek taybet lixwe digire.[5]

Pêwendiya gen û proteînan

Pirraniya pêkhateyên xaneyan ji proteînan pêk tê an jî proteîn lixwe digirin û hemû kar û barên xaneyê bi alîkariya proteînan tê rêvebirin. Yek ji komên herî girîngtirînên proteînan enzîm in. Enzîm di nav xaneyê de lêza karlêkên kîmyayî kontrol dikin. Wekî mînak, duhendebûna ADN, çêbûna endamokên nû, ji molekulên sakar çêkirina molekulên aloz, ji xurekan bidestxistina enerjî, têkşikestina molekulên aloz ji bo molekulên sakar, hin mînak in ji bo karlêkên ko enzîm bi kar tînin.[6]

Ango ji bo zîndeçalakiya xwe, pêdiviya xaneyê bi proteînan û enzîman heye. Proteînên her cor xaneyê li gor erk û şêweyê wê ye. Bi derbirîna gen, zanyariyên bomaweyî ji gen ber bi proteînê tên arastekirin.[7]

Di xaneyê de çêkirina proteîn, bi gen dest pê dike. Gen parçeyê erkî (fonksiyonî) ya ADN-yê ye û bo çêkirina proteîn, zanyariyên bomaweyî dabîn dike. Her yek ji genek ji bo proteînek diyarkirî, kodek taybet dabîn dike.[6]

Her yek ji sîfetên wekî rengê porê mirovkomeleya xwîna mirov û hvd, herî kêm ji aliyê genek ve tê diyarkirin. Wekî mînak, gen bi navbeynkariya ARN-peyamber, çêkirina proteîna melanîn (corek pîgmet) rêk dixe.[8] Melanîn di çikildana mûyê de berhev dibe û reng dide porê mirov. Ji ber ko genên ji bo rengê por di hemû mirov de ne heman e, rengê porê mirov jî bi awayekî bomaweyî ji hev cuda ne.

Di xaneya navikseretayî de pêkhateya operona genên kodkirina proteînan.Rêzeya rêkxistinê ji bo beşên kodkirina proteînan, dema derbirînê kontrol dike. Beşên promoter, operator û hanbar (enhancer) ji bo çêkirina ARN-peyamber, libergirtina genan rêk dixe. Beşên nayên wergerandin ên ARN-peyamberê, kontrola qonaxa wergeranê dikin.

Pêwendiya gen, ADN û kromozom


Di xaneya navikrasteqîn (êkaryot) de pêkhateya gena kodkirina proteînê.Rêzeya rêkxistinê kontrol dike ka ji bo beşa kodkirina proteînê kînga û li kuderê wê derbirîna gen rû bide. Beşên promoter û hanbar (enhancer) libergirtina genan bo ARN-ya destpêk rêk dixin. Bi sererastkirinê, întronên ARN-ya destpêk tê jêkirin, egzon bi hev re tên girêdan, kulavê 5' û kilika fire-A lê tên zêdekirin. Beşên 5' û 3' yên nayên wergerandin, di konaxa wergeranê de karê rêkxistinê pêk tînin.

Gen di xaneyê de bi şeweyê rêzeya nukleotîdan, li ser ADN-yê de cih digirin. Kromozomên navikrasteqînan ji ADN û proteîna hîston pêk tên. Li ser kromozomek de dibe ku bi hezaran gen hebin. Ango genên mirov li ser kromozomên mirov de cih digirin. Kromozomên mirov jî ji ADN û proteîna hîston pêk tên. Cihê her genek li ser kromozomê de taybet e. Ev cihê genan wekî lokus tê navkirin.[9]

Hemû zîndewer xwediyê genan e. Di xaneyek de tevahiya zanyariyên bomaweyî wekî genom tê navkirin. Genoma mirov ji 20 hezar heta 25 hezar cor genan pêk tê. Bi qasî % 29ê genoma mirov ji genan pêk tê. %71ê genoma mirov ji beşên nekodkirinê (bi înglîzî: non-coding regions) pêk tê. Beşên nekodkirinê bi gelemperî kar dikin ji bo rêkxistin û kontrola proteînên tên çêkirin.[10]

Hin corên vîrusan, li dewsa ADN, molekula ARN-yê wekî embara zanyariyên bomaweyî bi kar tînîn, ji van vîrusan re tê gotên vîrusên ARN-yî. Di van vîrusan de gen bi şêweyê nukleotîd, li ser zîncîra ARN-yê de cih digirin.

Erk û pêkhate

Li gor erkên xwe du komên serekî yên genan heye;

1.Genên ji bo çêkirina ARN-peyamber tê libergirtin û di rîbozoman de ji bo çêbûna zincîra firepepdîdek tê wergerandin.

2. Genên ko ji bo libergirtina ARN-guhêzer, ARN-rîbozomî û ARN-yên din kar dikin, berhemên van genan beyî ko werin wergerandin, raste rast tên bikaranîn.[11]

Li ser ADN-ye de genên ko kod didin asîdên amînî wekî genên kodkirinê (genên pêkhateyê) tên navkirin. Gava genek pêkhateyê tê libergirtin, ARN-peyamberek taybet peyda dibe, di vê ARN-yê de kodonên taybet ji bo asîdên amînî şîfre lixwe digirin. Li gor van şîfreyan ji zincîra asîdên amînî, firepeptîdek taybet tê çêkirin. Ango ARN-peyamber ji bo çêkirina proteîn, molekulek navbeynkar e. Di xaneyên zîndeweran de piraniya genan, genên kodkirinê ne.

Lê hinek gen jî wekî genên rêkxistinê (genên nekodkirinê) tên navkirin, evan genan nayên wergerandin, ango proteîn nadin çêkirin, bi libergirtinê, raste rast ARN-yek çalak didin çêkirin. Berhemên serekî yê genên rêkxistinê, ARN-guhêzer û ARN-rîbozomî ne.[12] Herwisa ji bilî wan, ARN-ya piçûk a navikê (bi înglîzî: small nuclear RNA (snRNA)),ARN-ya piçûk a navikokê (bi înglîzî: ssmall nucleolar RNA (snoRNA)) û hin ARN-yên din jî ji aliyê genên nekodkirinê ve tên çêkirin. Genên rêkxistinê kodên ji bo rêkxistina derbirîna gen lixwe digirin.[13]

Kontrola çalakiya genan

Xaneyek kêm caran ji sedî 10ê genên xwe yekcar bikar tîne. Ango pirraniya genên xaneyê bi gelemperî bêdeng in.

Gelek hokar bandor li xaneyê dikin ko kîjan gen, kînga were bikaranîn. Dibe ko hokar şertû mercên nav sîtoplazmayê be, şileya derveyê xaneyê be an jî cora xaneyê be. Hokarên bo kontrolkirina derbirîna gen, dibe ko derbirîna gen bide destpêkirin, pêvajoya derbirîna gen hêsantir bike, hêdî bike an jî rawestîne.[1]

Gen di bomaweya Mendelî de

Cor û rêza genên li ser kromozomên lêkçû heman in.

Di zîndewerên dîploîdî de di xaneyê de ji her kromozomek cotek heye, cota kromozoman wekî kromozomên lêkçû (homolog) tê navkirin. Cor û rêza genên li ser kromozomên lêkçû heman in.

Di ser kromozomên homolog de du an jî zêdetir genên cîgir (alternatîv) wekî allel tên navkirin.[8] Bi kurtasî, şêweyên cuda yên genek (bohêl) diyarkirî wekî allel tên navkirin.Wekî mînak, genên ji bo diyarkirina rengê kulîlka polkeyê allela spî û allela mor e. Allelek ji bavanê nêr, allela din ji bavanê mê derbasî weçeyê dibe.

Gena (allela) ko xwe di rûxsarebabeta zîndewerê de nîşan dide û çêbûna rûxsarebabeta gena din a heman sîfetê asteng dike, wekî gena zal tê navkirin. Gena zal bi tîpa girdek tê nîşankirin.(A,B,C)

Gena ko li hember gena zal, di rûxsarebabetê de xuya nabe û veşartî dimîne, wekî gena bezîw tê navkirin. Heke herdu allelên heman genê jî bezîw bin, vê gavê gena bezîw, xwe di rûxsarebabeta zîndewerê de nîşan dide. Gena bezîw bi tîpa hûrdek tê nîşankirin.(a,b,c)

Mutasyona gen

Gava di hejmar an jî rêza nukleotîdên genek de guherîn çêbe, di genê de mutasyon rû dide. Dibe ko mutasyona gen ji ber jêbirîn, zêdebûn, ji nû ve rêzbûna nukleotîdên gene, an jî ji ber guherina nukleotîdek bi yeka din ve rû bide.[14]

Heke gena mutant neyê sererastkirin û proteînek şaş a neguncav kod bike, dibe ko di xaneyê de şêrpence dest pê bike.[15]

Çavkanî

  1. Jump up to:a b Starr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.
  2. ^ Kampourakis K (2017). Making Sense of Genes. Cambridge, UK: Cambridge University Press.
  3. ^ Cell biology and histology / Leslie P. Gartner, James L. Hiatt, Judy M. Strum. — 6th ed.
  4. ^ Berk, A., Kaiser, C. A., Lodish, H., Amon, A., Ploegh, H., Bretscher, A., & Krieger, M. (2005). Molecular Cell Biology (5th ed.). CA.
  5. ^ Solomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
  6. Jump up to:a b Betts, J., Desaix, P., Johnson, E., Johnson, J., Korol, O., & Kruse, D. et al. (2017). Anatomy & physiology. Houston, Texas: OpenStax College, Rice University,
  7. ^ Campbell, N. A., & Reece, J. B. (2008). Biology (8th ed.). San Francisco, CA: Benjamin-Cummings Publishing Company.
  8. Jump up to:a b Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
  9. ^ Jones, M., Fosbery, R., Gregory, J., & Taylor, D. (2014). Cambridge International AS and A Level Biology Coursebook with CD-ROM (4th ed.). Cambridge, MA: Cambridge University Press
  10. ^ Genetic Alliance; The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services. Understanding Genetics: A New York, Mid-Atlantic Guide for Patients and Health Professionals. Washington (DC): Genetic Alliance; 2009 Jul 8. CHAPTER 1, GENETICS 101. Available from: [1]
  11. ^ S.W.D. and King, R.C. (2002) A dictionary of genetics. 7th. ed. New York, NY, USD: Oxford University Press.
  12. ^ Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  13. ^ Parker, N., Schneegurt, M., Tu, A. T., Forster, B. M., & Lister, P. (2016). Microbiology. Houston, Texas: Rice University.
  14. ^ Britannica, The Editors of Encyclopaedia. "gene". Encyclopedia Britannica, 17 Jan. 2024, [2]. Accessed 17 January 2024.
  15. ^ Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,

2023/12/25

Koda bomaweyê

 Koda bomaweyê (bi înglîzî: genetic code), koma qaîdeyên ko zanyariyên bomaweyî yên di ADN an jî ARN-yê de hatine şîfrekirin, ji aliyê xaneyên zîndeweran ve tê wergerandin bo çêkirina proteînan.


Zanyariyên bomaweyî bi şîfreyên (kodên) ji sêyaniyên nukleotidên dûvyek (kodon) ên ADN û ARN-yê de cih digin û ji bo çêkirina proteîn, rêzeya asîdên amînî diyar dikin.[1]

Li gel molekula ADN-yê, ARN-peyamber, ARN-guhêzer, rîbozomasîdên amînî û hin enzîm jî bi koda bomaweyê re têkîldar in. Koda bomaweyê ji bilî hinek îstîsnayan, di hemû cor zîndeweran de hema bi heman şêweyê ye û ji 64 kodan pêk tê.

Pêwendiya ADN, gen û koda bomaweyê

Rêzeya kodonan di beşek molekulek ARN-peyamberê de. Her kodon ji sê nukleotîdan pêk tê, ji bilî kodonên westanê, her kodonek bi asîdek amînî re têkildar e. Navê nukleotîdan bi tîpên A, U, G û C têne kurtkirin. Ji ber ko U (urasîl) bikar tîne, mirov pê derdixe ko ev molekul ARN ye. ADN li şûna urasîlê T (tîmîn) bikar tîne. Ev molekula ARN-peyamber wê rê bide rîbozomê ko proteînekê li gorî vê kodê çêbike.

ADN-ya xaneyê, zanyariyên bomaweyî lixwe digire. Zanyariyên bomaweyî bi şêweyê gen, di rêzeya komên nukleotîdên ADN-yê de cih digirin.[2] Ango li ser zincîrên ADN-yê de gelek gen heye.

Di vîrusên ARN-yî de zanyariyên bomaweyî di molekula ARN-yê de cih digirin. Ango gen li ser molekula ARN ya vîruse de ne.[3]

Gen yekeya bingehîn a bomaweyê ye. Sîfetên bomaweyî bi navbeynkariya genan ji bavanan (bi înglîzî: parents) derbasî weçeyê (bi înglîzî: offspring) dibe. Gen bandor li fenotîp (şikil ) û zîndeçalakiyên zîndewerê dike. Gen bi şêweyê koda bomaweyê çêkirina proteînan an jî ARN-yan kontol dike.

Ji ber ko rêze û hejmara nukleotîdên ADN-ya zîndewerek ji yekê din cuda ye, hejmar û cora genên her zîndewerê jî ji bo wê zîndewerê taybet e. Zîndewerên dîploîdî (2n) di kromozomên homolog de, ji bo her genek du alel (kopya) lixwe digirin.[4]

Gen zanyariyên bomaweyê bi şeweyî kodonan diguhazîne ARN-peyamberê. Kodon rêzeyek ARN-yê ye ko ji sê nukleotîdan pêk tê û ji bo diyarkirina asîdek amînî an jî ji bo rawestandina çêkirina proteîn, yekeya zanyariya bomaweyê pêk tîne.[5]

Bi çalakbûna genek û şandina şîfreyê ji bo çêbûna ARN an ji proteînek, wekî derbirîna gen (bi înglîzî: gene expression) tê navkirin. Bi gelemperî derbirîna gen û çêkirina proteîn bi heman wateyê tên bikaranîn.

Bi kurtasî, koda bomaweyê ji 64 cor kodonan pêk tê[6] û talîmatên genê ne ko ji xaneyê re dibêje ka çawa proteînek taybet çêbike.[7]

Gerdûnîbûna koda bomaweyê

Koda bomaweyê gerdûnî ye, ji bilî hin istisnayan, hemû corên zîndeweran ji bo çêkirina proteînan heman bomawekod bi kar tînin.[8]Ango wateya her kodonek hema di hemû zîndeweran de heman e.

Di mîtokondrîkloroplast û hin zindewerên tekxaneyî de koda bomaweyê piçek ji koda bomaweyê ya gelemperî cuda ye. Loma hin zanyar koda bomaweyê wekî pêkhateyek gerdûnî nahesibînin.

UGA di xaneyên mirov de kodona westanê ye, lê di mîtokondriyê de ev kodon ji bo asîda amînî ya trîptofan şîfre ye. Herwisa di mîtokondriyê de kodona AUA ne ji bo îzolusînê lê ji bo metîonîn şîfre dide. Kodonên AGA û AGG ne ji bo şîfreya arjînîn lê wekî kodonên westanê kar dikin.[9]

Dîroka kifşa koda bomaweyê

Hê berî ko koda bomaweyê were deşîfrekirin, bala zanyaran li ser çawaniya xebata koda bomaweyê bû. Xebatên James Dewey Watson û Francis Crick ên ser ADN-yê, destnîşan kirîbû ko zincîra ADN-yê ji rêzeya çar cor nukleotîdan pêk tê.[9]

Herwisa herdu zanyar destnîşankirin ko rêzeya bazên ADN-yê koda bomaweyê lixwe digire.[10]

Lê mirovahî hê jî nedizanî ka rêzeya nukleotîdan çawa şîfre dide ji bo çêbûna proteînên ko rêzeya asîdên amînî yên wan ji hev cuda ye. Gelo rêzbûna çar nukleotîdên ji hev cuda (A,G,C,T), çawa ji bo 20 cor asîdên amînî dibû şîfe û bi hejmarek cuda û bi rêzeyek cuda wan bi hevre girê dida, proteînên cor bi cor dida çêkirin.

Heke her corek nukleotîd asîdek amînî şîfre bikira, wê gavê koda bomaweyê tenê 4 asîdên amînî şîfre dikir, lê di proteînên xaneyên zîndeweran de 20 cor asîdên amînî hebû.[9]

Zanyar dîtin ko bazên nîtrojenî yên nukleotîdên ADN-yê dibe ko mîna alfabeyek ji 4 tîpan kar bikin.[9]

Heke du cor baz şîfe bida asîdek amînî, ango şîfreya asîdek amînî ji du tîpan pêk bihata, wê gavê 16 şîfre ji bo asîdên amînî peyde dibû (AA,AU,AG,AC,UU,UA,UG,UC......), lê dîsa jî ji bo hemû asîdên amînî şîfre çênedibû. çar şîfre kêm dima.[11]

Heke şîfreya asîdên amînî ji koma sê bazan pêk bihata, wê gavê 4 cor baz sisê bi sisê dikarîbûn 64 cor şîfre peyda bikirana. Ev hejmara şîfreyan jî ji bo 20 corên asîdên amînî bes bûn, bi serda zêde bûn jî.[11]


necemsergircemsergirbazîasidî(Kodona westanê)
Ev tabloya koda bomaweyê 64 cor kodonên ARN-peyamberê û asîdên amînî yên ji aliyê kodonan ve tên diyarkirin nişan dike. Arasteya wergerana ARN-peyamber: 5' → 3' .

KODA BOMAWEYÊ (Genetic code)

Baza duyem
UCAG
Baza

yekem

UUUU (Phe/F) Fenîlalanîn

UUC (Phe/F) Fenîlalanîn

UCU (Ser/S) Serîn

UCC (Ser/S) Serîn

UAU (Tyr/Y) Tîrozîn

UAC (Tyr/Y) Tîrozîn

UGU (Cys/C) Sîstîn

UGC (Cys/C) Sîstîn

U


C

Baza

sêyem

UUA (Leu/L) LusînUCA (Ser/S) SerînUAA Okra (RAWESTE)UGA Opal (RAWESTE)A
UUG (Leu/L) LusînUCG (Ser/S) SerînUAG Amber (RAWESTE)UGG (Trp/W) TrîptofanG
CCUU (Leu/L) Lusîn

CUC (Leu/L) Lusîn

CCU (Pro/P) Prolîn

CCC (Pro/P) Prolîn

CAU (His/H) Hîstîdîn

CAC (His/H) Hîstîdîn

CGU (Arg/R) Arjînîn

CGC (Arg/R) Arjînîn

U


C

CUA (Leu/L) Lusîn

CUG (Leu/L) Lusîn

CCA (Pro/P)Prolîn

CCG (Pro/P) Prolîn

CAA (Gln/Q) Glutamîn

CAG (Gln/Q) Glutamîn

CGA (Arg/R) Arjînîn

CGG (Arg/R) Arjînîn

A


G

AAUU (Ile/I) Îzolusîn

AUC (Ile/I) Îzolusîn

ACU (Thr/T) Trîonîn

ACC (Thr/T) Trîonîn

AAU (Asn/N) Asparajîn

AAC (Asn/N) Asparajîn

AGU (Ser/S) Serîn

AGC (Ser/S) Serîn

U


C

AUA (Ile/I) ÎzolusînACA (Thr/T) TrîonînAAA (Lys/K) LîzînAGA (Arg/R) ArjînînA
AUG (Met/M) Metîonîn

(DEST PÊ BIKE)

ACG (Thr/T) TrîonînAAG (Lys/K) LîzînAGG (Arg/R) ArjînînG
GGUU (Val/V) Valîn

GUC (Val/V) Valîn

GCU (Ala/A) Alanîn

GCC (Ala/A) Alanîn

GAU (Asp/D) Asîda aspartî

GAC (Asp/D) Asîda aspartî

GGU (Gly/G) Glîsîn

GGC (Gly/G) Glîsîn

U


C

GUA (Val/V) Valîn

GUG (Val/V) Valîn

GCA (Ala/A) Alanîn

GCG (Ala/A) Alanîn

GAA (Glu/E) Asîda glutamî

GAG (Glu/E) Asîda glutamî

GGA (Gly/G) Glîsîn

GGG (Gly/G) Glîsîn

A


G

Koma 64 kodonên ji bo çêkirina proteînan de tên bikaranîn wekî koda bomaweyî tê navkirin.[12] Di sala 1961ê de zanyarên brîtanî Francis Crick û Sydney Brenner ji encama taqiyên (ezmûn) xwe pişrast kirin ko kod bazên sêyanî yê lê dû hev bi kar tînin. Li gor pêşbiniya wan, xwendina kod ji xalek sabit dest pê dikir û her carê sê nukleotid dihatin xwendin.[13]

Dîsa di sala 1961ê ji devletên yekbûyî yên amerîkayê, du zanyarên kîmyaya zîndeyî (bi înglîzî: biochemists) Marshall Nirenberg û Heinrich Matthaei ji taqiyên xwe zanyariyên derheqê erkên nukleotîdên sêyanî yên bo diyarkirina asîdên amînî bi dest xistin.

Marshall Nirenberg û Heinrich Matthaei di taqîkirinên xwe de ARN-peyamber a destkarî bi kar anîn.[13]

Herdu zanyar taqiyên xwe li derveyê xaneyê bi rêve birin. Ji bakteriya Escherichia coli ji bo çêkirina firepeptîdek, pêkhateyên wekî rîbozom, amînoasîl ARN-guhêzer û hokarên wergeranê wergirtin. ARN-peyamberek destkarî ya tenê ji nukleotîdên urasîl pêk tê (UUUUUUUUU...) amade kirin û tevlê pêkhateyên ji bo çêkirina firepeptîdê kirin. Di encama taqiyê de hat dîtin ko firepeptîda nû çêbûyî, tenê ji yek cor asîda amînî pêk tê. Zincîra nû çêbûyî tenê ji molekulên asîda amînî ya fenîlalanîn pêk dihat. Ev encam bi awayekî zelal da xuyakirin ko şîfreya koda bomaweyê ji bo asîda amînî ya fenîlalanîn, kodona UUU ye.[14]

Di taqiyên din da hat dîtin ko di ARN-peyambera ji nukleotîdên Adenîn pêk tê (AAAAAAAAA . . . ) koda bomawe ya AAA şîfre ye ji bo asîda amînî ya lîzînê, ARN-peyamber a ji nukleotîdên Sîtozînê pêk tê (CCCCCCCCC . . . ) jî bi kodona CCC, şîfre ye bo asîda amînî ya prolînê.

Bi rêbaza bikaranîna ARN-peyamber a destkarî ya ji nukleotîdên têkil pêk tê, (wekî mînak, bi awayekî korane têkilkirina polîmerên Adenîn û Sîtozînê) bi xebatên lêkolînerên mîna H. Gobind Khorana û paşê xebatên di zanîngeha Wisconsin de, kodonên din ên ji bo şîfreya asîdên amînî hatin kifşkirin. Bi taqîkirinên bi heman şêweyî bomawekoda gelemperiya asîdên amînî hat kifşkirin.[13]

Di sala 1967ê de tevahiya koda bomaweyê hat deşîfrekirin. Zanistvan şîfreya 64 kodonan aşkere kirin.

Di sala 1968ê de Marshall Nirenberg û H. Gobind Khorana ji bo van karên xwe, di warê fîzyolojî an bijîşkî de xelata Nobelê wergirtin.[15]

Kodonên westanê û kodona destpêk

Di xebatên bo nasîna kodonên ARN-pêyamberê de hat dîtin ko sê kodon- UAA, UGA, û UAG tu asîdek amînî diyar nake. Ev hersê kodon niha wekî kodonên westanê (westanekodon) tên zanîn. Kodonên westanê (bi înglîzî: stop codones) ji bo dawîanîna çêbûna firepeptîdê, sînyala rawestînê ne.[13]

Di xaneyên navikseretayî û yên navikrasteqînan de çêbûna firepeptîd bi asîda amînî ya metîonîn dest pê dike. Di piraniya ARN-peyamberan de kodona destpêk a asîda amînî ya metîonîn diyar dike, AUG ye. Di hinek cor bakteriyan de li dewsa kodona AUG-yê kodona GUG wekî şîfreya kodona destpêk a metîonînê kar dike. Hin caran jî di xaneyên navikrasteqînan de kodona CUG şîfre dide bo asîda amînî ya metîonîn.[16]

Herçiqas di çêbûna firepeptîdek de asîda amînî ya destpêk metîonîn be jî, metîonîn ne tenê di destpêka firepeptîdê de lê dibe ko wekî asîdek amînî ya asayî di nav zîncîra firepetîdê de di navbera asîdên amînîyên din de girêdayî jî were bikaranîn.

Rêzeya xwendinê ya vekirî (ORF)

Ji bo çêkirina firepeptîdek, rêzeya kodonên ARN-peyamberê yên ji kodona destpêk heta kodona rawestanê dirêj dibin, wekî rêzeya xwendinê (çarçoveya xwendinê) ya vekirî (bi înglîzî: open reading frame (ORF)) tê navkirin.[16]

Heke di dema wergeranê de rêzeya xwendinê ne bi awayek rast were xwendin, dibe ko proteîna rast çênebe. Li ser ARN-peyamberê li gel OFR, rêzeyên di rîbozoman de nayên xwendin jî hene û wekî “beşên nayên wergerandin” (bi înglîzî: untranslated region (UTR))tên navkirin. Yek ji erkê serekê yê beşên nayên wergerandinê , piştê qonaxa libergirtinê rêkxistina derbirîna genê ye.[17]

Kodon û Dijekodon

ARN-guhêzer sêyaniya nukleotid ên bi nave dijekodon lixwe digire. Dijekodon temamkerê kodona ARN-peyamber e û li gor koda bomaweyî, her dijekodonek asîdek amînî li firepeptîdê zêde dike.[8] Wekî mînak, kodona UUU ya ARN-peyamber wekî şîfreya bo asîda amînî ya fenîlalanîn tê wergerîn. Ji bo wê kodonê nukleotîdên temamkerên ARN-guhêzer AAA ye, ango dijekodona AAA û kodona UUU temamkerê hevdu ne. ARN-guhêzer a ko dijekodona AAA lixwe digire, di kotahiya serê 3' de asîda amînî ya fenilalanin hildigire.[14]

Dejenerebûna koda bomaweyê

Hin caran bendên hîdrojenê yên di navbera baza yekem a dijekodona ARN-guhêzer û baza sêyem a kodona ARN-peyamber, li gor bendên navbera bazên din, piçek sist ava dibe. Baza sêyem a kodonê ji cihê xwe yê asayî piçek dileqe, ji ber sistiya (lawaziya) bendên hîdrojenê, dijekodonek dikare du an jî zêdetir cor kodon nas bike.

61 cor kodon şîfre didin bo diyarkirina 20 cor asîdên amînî. Ango hêjmara kodonan ji ya asîdên amînî zêdetir e.

Ji nav 20 asîdên amînî tenê her yek ji metîonîn û trîptofan ji aliyê yek kodonek (metîonîn=AUG, trîptofan= UGG) ve hatine şîfrekirin.18 asîdên amînî ji aliyê 2 heta 6 kodonan ve tên şîfrekirin.[18]

Ji ber ko bi gelemperî du an jî zêdetir kodon heman asîda amînî diyar dikin, mirov dikare ji bo koda bomaweyê peyva xerabûyî (dejenerebûyî) (bi înglîzî: degenerate) bi kar bîne. Piraniya caran baza sêyem a kodonê dejenerebûyî ye an jî guherî ye.[11] Lê hin caran baza duyem an jî ya yekem jî dejenere dibe.

Kodonên ko şîfre didin ji bo heman asîda amînê, bi gelemperî du nukleotîdên wan heman in, nukleotîdek wan ji hev cuda ye. Herwisa asîdên amînî yên ko pêkhateya kîmyayî ya koma fermaniyên (bi înglîzî: side chain) wan dişibin hevdu, ji aliyê kodonên hevşêwe ve têne şîfrekirin.[8]

Hin caran dibe ko ji ber mutasyonê nukleotida sêyem bi nukleotîdek din ve hatibe guhertin, lê rêzeya kodonê piçek biguhere jî, dibe ko şîfreya kodonê ji bo asîda amînî ya diyarkirî neguhere, ango di eslê xwe de herdu nukleotîdên li aliyê serê 5`ê kodonê, hê pirtir bandor li ser diyarkirina asîda amînî dikin.[19]

Wekî mînak, heke ji ber mutasyonê di zincîra ARN-peyamber de kodona GAA biguhere bo kodona GAG, çêbûna proteînê de tu guherîn rû nade, ji ber ko kodonên GAA û GAG herdu jî kod in ji bo heman asîda amînî ya asîda glutamî.[20] Ango dejenerebûna koda bomaweyê zîndewerê ji ziyanên hin mutasyonan diparêze.

Li gor rêbaza Watson- Crick di navbera kodon û dijekodonê de baza Adenîn bi ya Urasilê ve, baza Guanîn jî bi baza Sîtozînê ve gîrêdana bi bendên hîdrojenê ava dikin. Heke hemû kodon û dijekodon bi awayekî standart, li gor rêbaza Watson- Crick bi hev re bihatana girêdan, divê ji bo 61 cor kodon, di xaneyê de 61 cor dijekodon, ango ARN-guhêzer jî hebûya. Lê hejmara cora dijekodonan ne ewqas e û kêmtir e. Piraniya xaneyan 40 heta 60 cor ARN-guhêzer lixwe digirin.[21]

Hema bigre hemû bazên yekem û duyem ên kodonê li gor rêbaza Watson- Crick bi bazên duyem û sêyem ên dijekodonê ve girêdan ava dikin.[16]

Hin caran bendên hîdrojenê yên di navbera baza yekem a dijekodona ARN-guhêzer û baza sêyem a kodona ARN-peyamber, li gor bendên navbera bazên din piçek sist ava dibe. Baza sêyem a kodonê ji cihê xwe yê asayî piçek dileqe, ji ber sistiya (lawaziya) bendên hîdrojenê, dijekodonek dikare du an jî zêdetir cor kodon nas bike.[22]Di kodonên wiha de nukleotida di rêza sêyem, wekî cihê sist (bi înglizi: wobble position) tê navkirin. Nukleotîda cihê sist bo diyarkirina asîdek amînî de bi qasî herdu nukleotîdên din ên kodonê giring nin e.[23]

Wekî mînak, ARN-guhêzer a bi dijekodona 3'-UCU-5' dikare bi du cor ARN-peyamber ve, ARN-peyamber a bi kodona 5'-AGA-3' an jî ya bi kodona 5'-AGG-3' ve cota bazên sist ava bike. Herdu kodon jî asîda amînî ya arjînîn diyar dikin.[14]

Çavkanî

  1.  S.W.D. and King, R.C. (2002) A dictionary of genetics. 7th. ed. New York, NY, USD: Oxford University Press.
  2.  Mader, S., & Windelspecht, M. (2017). Human Biology (15th ed.). New York, NY: McGraw-Hill Education.
  3.  Payne S. Introduction to RNA Viruses. Viruses. 2017:97–105. doi: 10.1016/B978-0-12-803109-4.00010-6. Epub 2017 Sep 1. PMCID: PMC7173417
  4.  Lawrence, E. (2005). Hendersons dictionary of biology. Harlow: Pearson/Prentice Hall. ISBN 978-0-13-127384-9
  5.  National Human Genome Research Institute.Codone.[1]).
  6.  Clark, D. P. (2005). Molecular biology. Elsevier Academic Press.ISBN: 0-12-175551-7
  7.  National Human Genome Research Institute. Genetic code [2]
  8. ↑ Jump up to:a b c Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,
  9. ↑ Jump up to:a b c d Losos, J., Mason, K., Johnson,G., Raven, P., & Singer, S. (2016). Biology (11th ed.). New York, NY: McGraw-Hill Education.
  10.  Glick, B. R. (2010). Molecular biotechnology: Principles and applications of recombinant DNA (4th ed.). ASM Press.
  11. ↑ Jump up to:a b c Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  12.  Starr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.
  13. ↑ Jump up to:a b c d Solomon, E., Martin, C., Martin, D., & Berg, L. (2015).Biology. Stamford: Cengage Learning.
  14. ↑ Jump up to:a b c Campbell, N. A., & Reece, J. B. (2008). Biology (8th ed.). San Francisco, CA: Benjamin-Cummings Publishing Company.
  15.  The Nobel Prize in Physiology or Medicine 1968. NobelPrize.org. Nobel Prize Outreach AB 2023. Fri. 15 Dec 2023. [3]
  16. ↑ Jump up to:a b c Berk, A., Kaiser, C. A., Lodish, H., Amon, A., Ploegh, H., Bretscher, A., & Krieger, M. (2005). Molecular Cell Biology (5th ed.). CA.
  17.  Mignone, F., Gissi, C., Liuni, S. et al. Untranslated regions of mRNAs. Genome Biol 3, reviews0004.1 (2002). https://doi.org/10.1186/gb-2002-3-3-reviews0004
  18.  Britannica, The Editors of Encyclopaedia. "genetic code". Encyclopedia Britannica, 11 Oct. 2023, [4]. Accessed 12 December 2023.
  19.  Parker, N., Schneegurt, M., Tu, A. T., Forster, B. M., & Lister, P. (2016). Microbiology. Houston, Texas: Rice University.
  20.  Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.
  21.  (2008). tRNA (transfer RNA). In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6754-9_17521
  22.  Robert F. Weaver(2010).—5th ed.Published by McGraw-Hill
  23.  Murray, G., Murray, J., Granner, & MAYES. (2003). Harper's Biochemistry Illustrated (26th ed.). McGraw-Hill.