Celadet Alî Bedîrxan

Me zanî ko xweseriya me, di zimanê me de ye û em bi tenê bi hînbûna xwendin û nivîsandina zimanê xwe û parastina wî, di civata miletan de, wek miletekî xweser dikarin bijîn û payedar bin.
Celadet Alî Bedîrxan (1893-1951)
Showing posts with label hesin. Show all posts
Showing posts with label hesin. Show all posts

2024/06/12

Zincîra Guhaztina Elektronan


Zincîra guhaztina elektronan
 an jî sîstema guhaztina elektronan (bi înglîzî: electron transport chain-electron transport system), zincîra molekulên ko ji bo çêkirina ATP-yê tevlê rêzekarlêkên oksandin û kêmkirinê (redoks) dibin.[1]

Hin caran li dewsa “zincîra guhaztina elektronan”, peyva “zincîra henaseyê (bi înglîzî: respiratory chain) tê navkirin.[2]

Bahenaseya xaneyî (bi îngilîzî: aerobic cellular respiration) ji sê beşên serekî pêk tê: Glîkolîz, çerxa Krebs û fosforîlasyona oksîdatîv.

Di glîkolîzê de glukoz tê hilweşandin bo 2 molkulên pîruvatê û ji glukozê 2 NADH û 2 ATP tê berdan. Her piruvatek bi oksandinê diguhere bo asetîl CoA, CO2 û NADH jîn tê berdan. Paşê asetîl CoA di çerxa Krebs de tê bikaranîn. Di çerxa Krebs de ji bo her dorê, ji asetîl CoA-yê 2 CO2, 3NADH, 1 FADH2 û 1 ATP peyda dibe. Di qonaxa fosforîlasyona oksîdatîv de NADH û FADH2 yên di gavên berê de hatine berdan di çêkirina ATP de tên bikaranîn.

Fosforîlasyona oksîdativ ji du qonaxan pêk tê: zincîra guhaztina elektronan (bi îngilîzî:electron transport chain (ETC)) û kemîozmoz (bi înglîzî: chemiosmosis).

Di xaneyên navikrasteqîn de zincîra guhaztina elektronan (ZGE) û enzîma çêkerê (diristker) ATP-yê di nav parzûna navî ya mîtokondriyê de bicihbûnî ne. Parzûna navî ya mîtokondriyê locdar e û wekî krîsta tê navkirin. Di xaneyên navikseretayî de zincîra guhaztina elektronan li ser navpoşê parzûna xaneyê de cih digirin.[3]

NADH û FADH2 ji aliyê zincîra guhaztina elektronan ve tên oksandin, elektronên ji NADH û FADH2-yê bi navbeynkariya zincîrê tê guhaztin bo molekula oksîjenê.[4]

Piraniya pêkhateyên zincîra guhaztina elektronan proteîn in. Proteînên zincîrê bi şeweyê kompleksên fireproteînî (bi înglîzî: multiprotein complex) ne û ji I heta IV-a tên navkirin. Komen prostetî bi proteînan ve bi awayekî zexm girêdayî ne. Komên prostatî (bi înglîzî: prosthetic groups) pêkhateyên neproteînî ne û ji bo çalakiya katalîzekirinê ya proteînê (enzîm) girîng in.[5]

Gava pêkhateyek zincîrê ji cîranê xwe elektron werdigire, tê kêmkirin (bi îngilîzî: reduced) û gava elektronên xwe dide molekulek din jî tê oksandin (bi îngilîzî: oxidized). Her cara ko di zincîra guhaztina elektronan de elektron tên guhaztin, wergirê elektronronan bi girtin û berdana elektronan ji asta kêmkirinê diguhere bo asta oksandinê.[5]

Di zîncîra guhaztina elektronan de, NADH û FADH2 yên tevlê karlêkên oksan û kêmkirinê (redoks) dibin, elektronên (hîdrojenên) xwe ji hilweşandina glukozê (an jî xurekên din) bi dest dixin.[1]

Bi alîkariya enzîmên hîdrojenaz ve, ji NADH û FADH2 hîdrojen tên qetandin, elektronên hîdrojenan ji aliyê molekulek endamê zincîra guhaztina elktronan ve tên wergirtin. Gava ji hîdrojenê elektron tê berdan hîdrojen êdî tenê ji protonek pêk tê, loma ji vê gavê şûnve êdî ji bo hîdrojena oksandî (H+) peyva proton tê bikaranîn.

Di zincîrê de li gor meyla wergirtin an jî berdana elektronan, her molekul di rêzek taybet de cih digire. Meyla wergirtina elektronan, ji molekula yekem a zincîrê ber bi molekula dawî, her ko diçe zêdetir dibe. Di zîncîra guhaztina elektronan de, elektron ji molekulek bi meyla wergirtina kêm, ber bi molekulek bi meyla wergirtina zêdetir tên guhaztin.[1]

Di her guhaztinek de elektron hinek enerjî berdide. Enerjiya ji aliyê elektronan ve hatiye berdan ji bo pompekirina protonan (H+) ji parzûna navî, ber bi qada navbera parzûnan ve tê xerckirin.[6]

Di fosforîlasyona oksîdatîv de guhaztina elektron bi sê awayê rû dide.[7]

1. Rasterast guhaztina elektronan. Wekî mînak, di kêmkirina Fe3+ bo Fe2+ de Fe3+ rasterast elektronek werdigire.

2. Guhaztina wekî atoma hîdrojenê. Hîdrojen ji protonek (H+) û elektronek (e- ) pêk tê.

3. Guhaztina bi şeweyê iyona hîdrîdê (:H-). Hîdrîd du elektron û protonek lixwe digire.

Rêz û Pêkhateya kompleksên zincîrê

Di zîncîra guhaztina elektronan de du rêçeyên guhaztinê hene. Rêçeya yekem bi kompleksên I-III-IV rû dide û NADH wekî substrat tê bikaranîn. Di rêçeya duyem de substrat suksînad e û rêçe ji kompleksên II-III-IV pêk tê


Rêza asayî ya proteînên ZGE-yê Kompleksa I, kompleksa II, koenzîm Q, kompleksa III, sîtokrom C û kompleksa IV e.

Di zîncîra guhaztina elektronan de du rêçeyên guhaztinê hene. Rêçeya yekem bi kompleksên I-III-IV rû dide û NADH wekî substrat tê bikaranîn. Di rêçeya duyem de substrat suksînad e û rêçe ji kompleksên II-III-IV pêk tê[8]

Kompleksa I

Molekula yekem a zîncîra guhaztina elektronan Kompleksa I e. Kompleksa I wekî NADH dehîdrojenaz (bi înglîzî: NADH dehydrogenase) an jî ubîkunon oksîdoreduktaz (bi înglîzî: ubiquinone oxidoreductase) jî tê navkirin. Kompleksa I enzîmek gir e, flavoproteîn jî tê de ji 42 cor zincîrên firepeptîd û herî kêm guşiya ji 6 hesin-sulfur (Fe-S) pêk tê. Kompleksa I bi şêweyê tîpa L ye, milekî L-yê di nav parzûnê de ye, milê din ber bi matrîksê ve dirêj dibe (di xaneyên navikseretayî de ber bi sîtoplazmayê ve dirêj dibe). NADH dehîdrojenaz ji NADH-ê 2 hîdrojen diqetîne.[7]

NADH ên ko ji karlêkên glîkolîz, oksandina pîruvatê û ji çerxa Krebs hatine berdan, li vir tên oksandin. Ji NADH-ê 2 elektron tê guhaztin bo flavîn mononukleotîdê (FMN). Paşê ji vir elektron tên guhaztin bo beşa Fe-S. Dawiya dawî elektron tên guhaztin bo ubîkunonê (koenzîm Q). Bi van karlêkên oksandin û kêmkirinê bi navbeynkariya enerjiya ji elektronan, 4 iyonên hîdrojenê (H+) ji matrîksa mîtokondriyê derbasî valahiya navbera parzûnan dibin û tevlê avakirina gradyana protonan dibin[9]

Kompleksa II

Kompleksa II an jî bi navê xwe yê din suksînat dehîdrojenaz (bi înglîzî: succinate dehydrogenase) ji suksînatê elektron werdigire. Suksînat dema çerxa Krebs de peyda dibe. Gava suksînat tê oksandin bo fumeratê, 2 elektron di kompleksa II de ji aliyê FAD-ve tên wergirtin. FADH2 elektronan diguhazîne guşeya hesin-sulfurê (Fe-S), ji wir jî elektron derbasî ubîkunon (bi înglîzî: ubiquinone) dibin.Ubîkunon molekulek piçûk a dijav (bi îngilîzî: hydrophobic) û neproteînî yê zincîra guhezerê elektronan e. Herwisa ji bo vê molekulê navê koenzîm Q jî tê bikaranîn.(--6) Koenzîm Q elektronan diguhazîne kompleksa III.

Kompleksa III

Kompleksa III, an jî kompleksa sitokrom bc1 (cytochrome

bc1 complex), ji sîtokroma b, proteînên sîtokroma c û du guşeyên Fe-S pêk tê.

Piraniya guhêzerên elektronan ên di navbera ubîkunon û oksîjenê proteîn in û wekî sîtokrom (bi înglîzî: cytochromes) tên navkirin. Di zincîra guhaztina elektronan de gelek corên sîtokroman hene. Di zincîrê de sîtokoroma dawî, sîtokrom a3 ye. Elektron ji vir tên guhaztin bo oksîjenê.[5]

Sîtokrom komek proteînin ko koma hemê lixwe digirin. Sîtokrom di henaseya xaneyî û fotosentezê de di zincîra guhaztina eletronan de her carê elektonek diguhazîne.[4]

Koma prostatî ya sîtokroman wekî koma hem (bi înglîzî: heme group) tê navkirin û atomek hesinê lixwe digire. Wergirtin û berdana elektronan bi navbeynkariya atoma hesinê rû dide. Bi wergirtina elektronê de koma hem ji rewşa Fe3+ diguhere bo Fe2+, bi berdana elktronê bargeya koma hemê ji Fe2+ diguhere bo Fe3+ . Sîtokrom C dikare her carê tenê elektronek werbigire, her wisa her carê elektronek diguhazîne kompleksa IV. Li kompleksa III de 4 proton tên şandin bo valahiya navbera parzûnan.[5]

Kompleksa IV

Kompleksa IV, wekî sîtokrom c oksîdaz jî tê navkirin. Di vê kompleksê de sîtokrom c tê oksandin û elektron tên guhaztin bo oksîjenê. Oksîjen wergira dawîn e ji bo zincîra guhastina elektronan. Sîtokrom c oksîdaz ji 7 binebeşan pêk tê.[4] Li gel komên hem û baxir (mis), di sîtokrom c oksîdaz de proteînên a û proteînên a3 jî ji bo guhaztina elektronan û girêdana elektroan bi oksîjenê ve kar dikin. Enerjiya ji guhaztina elektronan tê berdan, ji bo guhaztina 4 protonan ber bi valahiya navbera parzûnan ve tê bikaranîn.

ATP sentaz

ATP sentaz an jî bi navek din kompleksa V, xestiya protonên di valahiya navbera parzûnan ji bo çêkirina ATP-yê bi kar tîne. Enzîma ATP sentaz ji du beşên serekî; beşên FO û F1 pêk tê. Ev herdu beş jî ji gelek binebeşan pêk te. Beşa FO dijav e (bi înglîzî: hydrophobic) û di nav parzûna navî de bicihbûyî ye. Ev beş ji bo derbasbûna protonan wekî cogek kar dike. Beşa FO ji ber herika protonan, bi şeweyê sîstema zivirîna (rotasyon) motoran dizivire. Di heman demê de ADP tê fosforîkirin û bi rêçeya fosforîlasyona oksîdatîv, ATP tê çêkirin.

Di xaneyên navikrasteqîn (êkaryotî) de, NADH-yên bi glîkolîzê hatine çêkirin, ji sîtoplazmayê bi guhaztina çalak tên şandin bo mîtokondriyê ko cota elektronên xwe bidin zincîra guhaztina elektronan. Ji ber ko ji bo guhaztina çalak hinek enerjî tê xerckirin, ji bo herdu NADH-yên ji glîkolîzê çêbûyî, enerjiya ji NADH-yek tê bidestxistin ne 3 lê safî 2 ATP ye. Ji ber ko NADH û FADH2 elektronên xwe di cihên cuda yên zincîra guhaztina elektrona de berdidin, enerjiya ji oksandina wan tê bidestxistin ne heman e. Elektronên ji NADH-ê li gor yên ji FADH2-yê, bi zîncîrek dirêjtir tên guhaztin. Loma ji elektronên NADH-ê, hê pirtir ATP tê bidestxistin.[1]

Çavkanî

  1. Jump up to:a b c d Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  2. ^ Starr, C., & McMillan, B. (2010). Human Biology (8th ed.). Pacific Grove, CA: Brooks/Cole Publishing Company.
  3. ^ Postlethwait, J. H., & Hopson, J. L. (2006). Modern Biology. NY, United states: Holt Rinehart & Winston.
  4. Jump up to:a b c Biochemistry. : Rawn, J.D. (1989) Biochemistry. Burlington, NC: Neil Patterson Publishers, Carolina Biological Supply Company. ISBN- 0-89278-400-8
  5. Jump up to:a b c d Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.
  6. ^ Simon, E. J., Dickey, J.L., Reece, J. B., & Burton, R. A. (2018).Campbell Essential Biology with Physiology (6th ed.). Newyork, United States: Pearson.
  7. Jump up to:a b David L. NelsonMichael M. Cox(2013). Lehninger Principles of Biochemistry. : W. H. FREEMAN AND COMPANY • New York ISBN-13: 978-1-4641-0962-1
  8. ^ Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019 Jul;44(1):3-15. toi: 10.3892/ijmm.2019.4188. Epub 2019 May 8. PMID: 31115493; PMCID: PMC6559295.
  9. ^ Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. [Updated 2023 Sep 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: [1]

Girêdanên derve

Ferhenga Biyolojiyê [2]